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1. Introduction

A straightforward consequence of Thue’s pioneering work on Dio-
phantine approximation [24] is: Let m be a non-zero integer and let
f ∈ Z[x, y] be a binary form. Then the equation f(x, y) = m has
finitely many integer solutions, unless f is the multiple of either a
power of a linear form, or a power of a binary quadratic form with pos-
itive nonsquare discriminant. Thue’s techniques were refined by Pólya
[15] and Siegel [18] to show that if f ∈ Z[x] has at least two distinct
roots, then

(1) P (f(x))→∞
as |x|→∞, where P (a) denotes the largest prime divisor of a non-zero
integer a. Using the Gelfond-Baker method, Shorey, van der Poorten,
Tijdeman and Schinzel [17] showed that if f ∈ Z[x, y] is a binary form
with at least three distinct linear factors (over C), then for any positive
integer d and all pairs of integers x, y with (x, y) = d and max(|x|, |y|) >
e,

(2) P (f(x, y)) �f,d log log max(|x|, |y|).
with an effective constant. Using the so-called sharpening of Baker [2],
in the case of binomials, Stewart [20] improved this to

P (axn − byn) �a,b

√
n/ log n.

Furthermore, if we let n run through the set Sκ of integers n with at
most κ log log n distinct prime divisors (0 < κ < 1/ log 2 fixed), Stewart
([21], [22]) showed that there exists an effective constant C(κ, a, b) > 0
such that

(3)
P (an − bn)

n
> C(κ, a, b)

log1−κ log 2 n

log log log n
.
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(note that the set Sκ has density 1). There are also similar results
when n is restricted to the set of primes. In 1962, Erdös [3, p. 218]
conjectured that

(4) lim
n→∞

P (2n − 1)

n
= ∞.

While heuristic arguments (see section 4 below) suggest the stronger
result

(5) P (an − 1)
?
� an1−ε

,

currently we do not even know that P (an − bn) > C(a, b)nθ for some
θ > 1. For more information on the history of these problems, see [3]
and the introduction in Shorey et.al.[17].

Let Q(n) denote the largest prime power divisor of n. Clearly,
Q(n) ≥ P (n) and so a consequence of the conjecture of Erdös is that
Q(2n− 1)/n→∞ as n→∞. In this paper, we prove this. In fact, we
can prove a more general result:

Theorem 1. For any ε > 0 and any integers a > b > 0, we have
Q(an − bn) � n2−ε, where the implied constant depends on a, b and ε.

One can sharpen the theorem so that

Q(an − bn) � n2−c/ log log n

for a suitable constant c > 0. Most likely, Q(2n−1) = P (2n−1) but we
are unable to prove this. If we write 2n− 1 = unvn with un squarefree,
vn squarefull and (un, vn) = 1, then a result of Silverman [S] states that
un is “large” under the ABC conjecture. We therefore apply the ABC
conjecture (see section 2) to resolve Erdös conjecture (4), in this way.
More precisely, we prove assuming ABC that for any ε > 0,

P (2n − 1) � n2−ε,

for n sufficiently large. Under the same hypothesis, we deduce sharper
forms of (1) and (2) above. A key role is played by the Brun-Titchmarsh
theorem on primes in arithmetic progressions which is a familiar theo-
rem in sieve theory. More generally, we prove:

Theorem 2. Assume the ABC conjecture. For any ε > 0 and any
integers a > b > 0, we have

P (an − bn) � n2−ε,

(where the implied constant depends on a, b and ε).
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Recall that if α, β are algebraic integers such that α+ β and αβ are
coprime, non-zero rational integers and that α/β is not a root of unity,
then the n-th Lucas number with respect to α, β is defined to be

tn = (αn − βn)/(α− β)

Now, if α, β are algebraic integers subjected to the weaker conditions
that (α+ β)2 and αβ are coprime, non-zero rational integers and that
α/β is not a root of unity, then the n-th Lehmer number with respect
to α, β is defined to be

un = (αn − βn)/(αδn − βδn),

where δn = 1 if n is odd, and δn = 2 if n is even. These sequences
arise naturally in the study of primality testing [25]. Using the same
techniques as in ([21], [22]), Stewart proved that for almost all integers
n and κ as in (3),

(6) P (un), P (tn) �α,β,κ C
log1−κ log 2 n

log log log n
n.

Using Frey’s refined ABC conjecture for number fields (cf. section 2)
and the Brun-Titchmarsh theorem for number fields [9], the same ar-
gument for Theorem 2 yields a corresponding improvement of (6) (we
will omit the proof).

Theorem 3. Let α, β be non-zero algebraic integers in a number field
K such that α/β is not a root of unity. Fix an integer δ > 0. Under
Frey’s refined ABC conjecture, for any ε > 0, if n is sufficiently large
(depending on α, β and δ), then

P
(
NormK/Q

(αn − βn

αδ − βδ

))
> n2−ε.

�

Remark 1. As the referee points out, Theorem 1 can be readily gen-
eralized to more general sequences such as those given in Theorem 3.
Cf. also the recent results of Ribenboim and Walsh [16] along these
lines.

For prime divisors of polynomial values we have the following strength-
ening of (1).

Theorem 4. Assume the ABC conjecture. Let f(x) ∈ Z[x] be a non-
constant polynomial with no repeated roots. Then for any ε > 0 and
n�ε,f 1, we have the lower bound

P (f(n)) > (deg(f)− 1− ε) log n.
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Erdös [3, p. 218] also raised the question of studying P (n! + 1). The
best results to date [4] are that P (n!+1) > n(1+o(1)) log n

log log n
, and that

lim supn→∞ P (n! + 1)/n > 2 + δ for some δ > 0. The ABC conjecture
yields the following improvement.

Theorem 5. Under the ABC conjecture, for every ε > 0 there exists
a constant c(ε) > 0 such that

P (n! + 1) >
(
n+

1

2

)
log n− (2 + ε)n+ c(ε).

In the same paper, Erdös asked if numbers of the form 2n±1 represent
infinitely many k-th power-free integers. In the case of 2n − 1 there is
a curious relation with Artin’s conjecture on primitive roots. More
generally, for any integer d, the Artin’s conjecture with index d states
that for any positive square-free integer a 6= 1, there exists infinitely
many primes p such that a (mod p) generates a subgroup of index d
in (Z/pZ)×. The argument in [11] readily shows that this generalized
Artin conjecture follows from the generalized Riemann hypothesis. We
have the following curious theorem which is suggested by the previous
discussion and is of independent interest. It can be viewed as a variation
on the work of Murty and Srinivasan [12].

Theorem 6. Either Artin’s conjecture on primitive roots with index 2
holds for a = 2, or there exist infinitely many primes p such that 2p−1
is composite.

Remark 2. Most likely, both possibilities of the Theorem are true. How-
ever, at present, neither assertion has been established unconditionally
so the Theorem is of some interest.

2. Statements of the ABC conjectures

We begin by stating the usual ABC conjecture [14]. See [13] for a
survey of its many conjectural applications.

Conjecture 1 (The ABC conjecture). For every ε > 0 there exists a
constant c(ε) > 0, such that for any triple of nonzero, pairwise coprime
integers A,B,C with A+B + C = 0, we have

max(|A|, |B|, |C|) < c(ε)
∏

p|ABC

p1+ε,

where the product is taken over the distinct prime divisors of ABC.

Now, let K/Q be a number field with discriminant ∆K . Denote by
OK the ring of integers of K. For any x ∈ K×, denote by hK(x) the
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exponential height of x over K. Frey [5] proposed the following refined
version of the ABC conjecture:

Conjecture 2 (Frey). For any ε > 0 and any ideal a ⊂ OK there
exists a constant c(ε,∆K , a) which depends linearly on log |∆K | and
log Norm a but otherwise not depending on K, such that for any pair
of elements A,B ∈ OK which generate the ideal a, we have the upper
bound

max
(
hK(A), hK(B), hK(A−B)

)
≤ (1 + ε)

( ∏
p|AB(A−B)

Norm(p)
)

+ c(ε,∆K , a).

Remark 3. It is a standard fact from commutative algebra that every
non-zero ideal in a Dedekind domain can be generated by two elements.
(cf. [1, exer. 7]).

3. Proof of Theorem 1

Denote by Φd(x, y) the homogenized d-th cyclotomic polynomial, so

an − bn =
∏
d|n

Φd(a, b).

Fix ε > 0. Recall the fact from elementary number theory that the
number of divisors of n, denoted d(n), satisfies the estimate d(n) =
O(nε). Thus, for any z ≥ 1 and a > b > 0,

an − bn =
∏
d|n
d≤z

Φd(a, b) ·
∏
d|n
d>z

Φd(a, b)

≤ aznε ·
∏
d|n
d>z

Φd(a, b).

Let p be a prime not dividing ab. It is an easy exercise to show that
p|Φd(a, b) implies p ≡ 1 (mod d) or p = P (d) and this occurs to at
most the first power. Let Q = Q(an − bn). As usual, write

ψ(x, d, 1) =
∑
n≤x

n≡1 (mod d)

Λ(n)
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where Λ(n) is the von Mangoldt function. Then, for z = n1−2ε, we
obtain

log(an − bn) � n1−ε +
∑
d|n
d>z

log Φd(a, b)

� n1−ε +O(nε) +
∑
d|n
d>z

ψ(Q, d, 1),

where the implied constants depend only on a, b and ε. The last sum
is

≤
∑
d|n
d>z

logQ
Q

d
� Q

z
d(n) logQ� Q(logQ)n−1+3ε

so that Q� n2−3ε. �

4. Prime divisors of binomials

For any integer n > 1, define the powerful part of n to be the product
κ(n) :=

∏
p:p2|n p

ordp(n). The quotient n/κ(n) is called the powerfree
part of n.

Denote by Φd(x, y) the homogenized d-th cyclotomic polynomial. For
any integers a > b > 0, write Φd(a, b) = Ud(a, b)Vd(a, b), where Ud(a, b)
(resp. Vd(a, b)) is the power-free part of Φd(a, b) (resp. powerful part),
so (Ud(a, b), Vd(a, b)) = 1.

Lemma 1. Under the ABC conjecture, for every ε > 0 there exists an
absolute constant c1(ε) > 0 such that, for any integers a > b > 0,∏

d|n

Vd(a, b) < c1(ε)(ab)
1+εaεn.

Proof. This is essentially Lemma 7 in [19]. For the sake of complete-
nesss, we shall briefly review the proof.

Apply the ABC conjecture and we get, for every ε > 0 there exists
an absolute constant c0(ε) > 0 such that

an = max(an, bn, an − bn) < c0(ε)
( ∏

p|ab(an−bn)

p
)1+ε

.

Since the square-free part of Vd(a, b) is ≤
√
Vd(a, b), this becomes

an < c0(ε)(ab)
1+ε

(∏
d|n

Ud(a, b)
√
Vd(a, b)

)1+ε

< c0(ε)(ab)
1+εan(1+ε)

(∏
d|n

Vd(a, b)
)−(1+ε)/2

.
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Rearrange the terms and we are done. �

Proof of Theorem 2. Lemma 1 shows that, under the ABC conjecture,∏
d|n

Ud(a, b) =
an − bn∏
d|n Vd(a, b)

�ε (an − bn)a−nε > an−1−nε = an(1−ε)−1.

For any d, we have the trivial estimate Ud(a, b) < Φd(a, b) < ad. For
any z ≥ 1, we have

an(1−ε) �ε,a

∏
d|n
d≤z

Ud(a, b)
∏
d|n
d>z

Ud(a, b) �ε,a

∏
d|n
d≤z

ad
∏
d|n
d>z

Ud(a, b).

Since
∑

d|n 1 �ε n
ε, upon letting z = n1−2ε,

an(1−ε) �ε,a n
εan1−ε

∏
d|n
d>z

Ud(a, b),

whence

(7) an(1−2ε) �ε,a

∏
d|n
d>z

Ud(a, b).

Now, Ud is the square-free part of the value of the homogeneous d-
th cyclotomic polynomial, so that if p 6 |ab divides Ud(a, b) then p ≡
1 (mod d). Now, suppose that P (an − bn) ≤ N := n2−5ε. Then for
d > z, the Brun-Titchmarsh theorem [23, p. 73] gives

Ud(a, b) �a,b

∏
p≤N

p≡1(d)

p�a,b,ε exp(2N/ϕ(d)) � exp(2N log log d/d)

≤ exp(n1−3ε log log n),

upon using ϕ(d) � d/ log log d. Combine this with (7), we get

an(1−ε) �ε,a,b

∏
d|n
d>z

exp(n1−3ε log log n).

Taking logs on both sides and we get

n(1− ε) �ε,a,b

∑
d|n
d>z

n1−3ε log log n�ε,a,b n
1−2ε,

a contradiction if n�ε,a,b 1. �
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Proof of Theorem 5. The ABC conjecture gives

n! �ε

( ∏
p|(n!)(n!+1)

p

)1+ε

�ε

(
en

∏
p|(n!+1)

p>n

p

)1+ε

.

Taking logs and applying the Stirling approximation, we get

(n+ 1/2) log n− n ≤ (1 + ε)
(
n+

∑
p|(n!+1)

p>n

log p
)
,

and the theorem follows. �

5. Heuristics for Erdös’ conjecture

For any prime p and any integer a not divisible by p, denote by fa(p)
the order of a (mod p). Define

Px = max
n≤x

P (an − 1).

Under the ABC conjecture, the argument for Lemma 1 shows that
an − 1 = unvn with un square-free and vn �a,ε a

εn. Thus∑
p≤Px

fa(p)≤x

[x/fa(p)] log p ∼ 1

2
x2 log a,

whence

(logPx)
∑

p:fp(a)<x

[x/fp(a)] ≥
1

2
x2 log a.

On the other hand,

(8)
∑
p≤Px

fa(p)≤x

[x/fp(a)] =
∑
n≤x

v(an − 1),

where v(m) denotes the number of distinct prime divisors of m. A
classical result of Hardy and Ramanujan [8] says that the average order
of v(m) is log logm. If we assume that v(an−1) behaves like this, then
it follows that an−1 usually has O(log n) prime divisors, in which case
the sum on the right side of (8) behaves like x log x. This gives a more
precise form of (5):

Px ≥ ax/2 log x.

In fact, we can do even better. The Hardy-Ramanujan result is based
on the heuristic that the probability a prime divides n is 1/p. Thus the
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number of prime divisors of n should be roughly∑
p≤n

1

p
∼ log log n.

In our case, an − 1 =
∏

d|n φd(a), so we should really be looking at

prime divisors of φd(a). But then all prime divisors are ≡ 1 (mod d),
so the average number of prime divisors of φd(a) should be∑

p≤ad

p≡1 ( mod d)

1

p
∼ log d

φ(d)
.

This slightly improves the heuristic above to

Px ≥ acx

for some constant c > 0.

6. Prime divisors of polynomials

The following result was noted independently by Langevin [10] and
Granville [6].

Theorem 7. Assume the ABC conjecture. Suppose that g ∈ Z[x] has
distinct roots. Then for any ε > 0 there exists a constant c(ε, g) > 0
such that for any integer m,∏

p|g(m)

p ≤ c(ε, g)|m|deg g−1−ε.

�

Proof of Theorem 4. Suppose that P (f(n)) �ε,f (deg(f)− 1− ε) log n
for n�ε,f 1. Then under the ABC conjecture, Theorem 7 gives(

deg(f)− 1− ε

2

)
log n�ε,f

∑
p|f(n)

log p�
∑

p<(deg f−1−ε) log n

log p

� (deg f − 1− ε) log n

for n sufficiently large, a contradiction. �

7. Compositeness of 2q − 1

Denote, by fa(p) the order of a (mod p), as before.
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Proof of Theorem 6. Define a set of primes (with η > 0)

S = {p ≤ x : p− 1 = 2l1 or 2l1l2, l2 > x1/2−η > l1 > x1/4−η},
where 2 is a quadratic residue mod p. If the set of primes p ∈ S with
p−1 = 2l1 is infinite, then Artin’s conjecture holds for index 2. So now
suppose that all the primes p ∈ S are of the form 2l1l2 with l1, l2 as
indicated in S. Then, the order of 2 mod p for p ∈ S is either l1 or l2. In
either case, 2l1−1 or 2l2−1 is divisible by p and hence composite since
each of these numbers is larger than p. This completes the proof. �

A similar argument can be applied to show that if it is not the case
that 2 is a primitive root for infinitely many primes p then (2p + 1)/3
is composite for infinitely many primes p. We leave the details to the
interested reader.
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