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Some & -results for Ramanujan's T-function

M. Ram Murty *

g8 1. Introduction
I take great pleasurc and pride in speaking to you, on
this sacred land of India, about a very important arithmetical

function, first discovered by the famous Indian mathematician

Srinivasa Ramanujan. He had the foresight and intuition to recognize
the importance of modular forms in the theory of numbers. He
investigated [9] s in rather great detail, one modular form, now

called Ramanujan's cusp form, defined by

This can be expanded in a power series in g and we have
(= o]
Az = Z T(nq"
n=1

and T is called Ramanujan's T -function. We have
T(1) =1, T(2) = -2, 7(3) = 252

T(L) = -1472 T(5) = 4830 .

#* The author is currently a Visiting Fellow at the
Tata Institute of Fundamental Research, Bombay.
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Ramanujan made two conjectures:
(1) T is a multiplicative function,
11
(ii) for each prime p, \T(p)\ < 2p% .

The first conjecture was proved by Mordell \—7] in 1917 and generalized
in a beautiful way by Hecke ['5 ] .« The second conjecture was
generalized by Petersson {8] to include other modular forms. The
full Ramamujan-Petersson conjecture was settled by Deligne [2] in
1976.
It is known that

1 i

Y sin(e +1) Gp

(™) = »p 5
sln P

where 6, € (0, 2x), by the result of Deligne, As T is multi-

plicative, it follows that

1"
Tm = O hexp(%)).

It is conjectured that this bound is sharp. More precisely,
Conjecture:
11/
T(n) = Q(n 2 exp (c1og n ),
log log n

for some ¢ > O,
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There is a conjecture of Salo-Tatc that the anples ©
arc equidistributed, as p varies, with respect to the measure

2 gin? ® do,

J

This is an unproved conjecture,
Even the weaker conjecture: there exists a ¢ < 7% and a 57 0
such that card (p < x: 0 ¢ 6, <¢ ) > x‘(', is unknown.

We shall prove below:

Theorem 1 (modulo weak Sato-Tate conjecture)

/
2 exp (=1L,

11
) =  [()(n

With respect to unconditional results, Rankin [10] showed

lim sup lT(n)‘ . 00
11
n-— oo n /2
and Joris 1-6] improved this to

1

- = £
11 22

@ = (D 2 emlcliog n) ).

R. Balasubramanian and I {1], succeeded in showing:

Theorem 2

11 24 =€
T(n) = _Q (n /2 exp(c(log n) 5 ).
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§ 2. Preliminaries

First, let me prove that T(n) = O (né), so that
the audience may gain some familiarity with the ideas involved in
the latter part of this talk, The cusp form A(z) enjoys some

properties, namely,

AGEED) o (@' Al
a b

for all ( e d ) € SL2(/Z), and
| ,a b
SL2(/Z) = { (c d) tad-bc=1, a,b,c, dé/Zk.

SL, (Z) acts on VZ , the upper half plane. The standard

fundamental domain for the action of SI_2 (Z) on VX is

L <x< & and N ¥ > 1, where z = x + iy.

0 -1
The mapping 2z —> - i— corresponding to ( O) transforms the

1

standard fundamental domain to another fundamental domain.

Now y6 l A(z)|  is easily checked to be invariant under the

action of SL, (Z) and bounded . As

]

1 =27 imx =2 Ty
[ Alx + 1y) e dx T{m) e s

0]

we find
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-2 my

y6 T(m) e = O,

Choosing y = :; , gives 7(m) =

For the sake of brevity, let us write

1
T. = T(n)/n /2

n
and set
oo R
Cn
£(s) = = .
1 n®
Proof of theorem 1. Now suppose the
true, Then card (p < x : O < o £ Tg

Take p < x, such that 0 £ ©

the product of all such primes < x,

we have

log N ~ ¢x

and so

— cx/log X
Ty = (V3)

> exp(clogNN)’

= log log

Omd).

Sato-Tate conjecture is

is .. cx
log x

Then if N denoles
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as desired, The proof assuming the weak Sato-Tate conjecture is

similar and left to the reader as an exercise.

8§ 3. Real zeroes of f(s)

Let

-2(s+11)
$(s) = (210) M (1) [7 () £ (25) £(s) s(s-1).
Then, it is known [A] that

V(s) = ][ 72| A |? b(z,s)#‘;%-il,
D

where J) denotes the standard fundamental domain and

3 -2s
#(z, 8) = 2] Iy T () Z'lmz + nl
z
the dash on the summation indicating that the sum over all pairs of

integers (m, n) ¥ (0, 0).

We shall sketch the proof that A#(s) has no real zeroes.
Tt is known that #(z, s) > 0 for 3 < s <1 and y< 7/,
z = x + iy, Therefore, we split the fundamental domain into two
regions: y £ A and y > A with A</, In y < A,
@(z, s) > O and the total contribution is = 0. In y > A,
the contribution is small in virtue of the fact that

A(z) = O (e—zjcy). The total integral is therefore > O.
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A more preclse proof requires the use of Kronecker's limit formula,

and we refer the reader to [1] for the details.

g 4. Proof of theorem 2.

We already saw that if we had Tp > 1 for a large

proportion of the primes, the () -result would follow. This

2
leads us to consider ’Z‘p - 1 and to study

T2 -1
Z RS 2 .
p r°
If we let
o) = 2 1
we find
il 7
log @(s) = Z Db (1+_.9_._2 ves)
p ps 2p5
We need:
2 1
To =
lemma 1 2 Pﬁ = + o if [5(-;:.
p.
2
Lp >1

Proof Suppose not.  Then, for some ISO < %,
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o L w
22 pCo

Tp >1
and so if we let

log B (s) = £ (s) - £_(s),

where 2 ' ’Z'2 3
— T -
p )Y
f+ (5) = Z _‘s—— (1 + s t e )
o P P 2p
T 1
Lp >
and
2 2
. 1 T -3
t(s) =- Z B (s By,
2P p° 2p
1
Tp <

we find that the abscissa of convergence of f+(s) is <« /50.

Hence, f,(s) converges absolutely in Re s 2 @o and in particular,
for Re s > 3. Therefore, the singularities of log @(s) coincide
with the singularities of f_(s) in Re s » 3. By a standard
method, it is possible to show that if N(T) denotes the number of

zeroes of  (s) in the critical strip, up to height T, we find
2
NT) = = Tlog T + 0OT.

As  ((s) has only .él_ log T + O(T) zeroes in this region, we find
I8

that log @(s) has singularities in Re s>

/%. But f _(s) has

non-negative Dirichlet coefficients and so, by a famous theorem of
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Iandau, one of thesc singularities is real. This contradicts the

fact that d¢:(s) has no real zeroes. This proves the lemma.

Now we know
2
T -1
= P = +o0 for p < 3.
2> p? '
p”1
In a standard way, it is now possible to deduce that for some 0O<Y< /5)
m+1 -d-€ 2 .
card(em<p(e N <’tp-1<pY)
m !5+X
> )
m
Setting
N = TJT0p
p

where the primes range over the primes in the above set, we find

>.]h\(1+—'\(—1’:€—)
p p

>> exP(Z—\{—i-:é-—)
p

p
fr-e¢
>> exp ((Log ) £77 )

As sp y we get TN = () (exp (1og N)%—é).
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By utilizing prime powers, it is possible to improve the exponent

to % . The key idea is supplied by the lemma:

=

Lemma 2. There is a constant ¢ > 1 such that for every prime p,

there is an m(p)

(P & —1
m{p <: yrz - 1‘

2
and T ze > 1, whenver 75> 1

(m
P P

We leave the proof of this lemma as an exercise to the reader.

8. 5 Concluding remarks

There is nothing special about Ramanujan's cusp form, with

respect to -f> ~theorems. We have:

oD -
Theorem 3. I flz) = :E%a(n)ezjtlnz is 2 normalized Hecke
1

eigen form of weight k, then

1
k-1 7
- —y c({log n)
a(n) )2 exp (~J———-—log oz )
If similar results concerning real zeroes of the Rankin convelution
were known, this theorem could be improved. We remark that the
Sato-Tate conjecture is equivalent to showing that each of the

Dirichlet series
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o0
z =
s
1
has an analytic continwtion for Re s > 1 and no zeroes on ¢ = 1

for k 2 3. At present, this is only known for k = 3.

We have shown that 7{(n) becomes very large infinitely often.
But there is a conjecture of FElliott 3] that this should not happen

too often. More precisely, Elliott showed either

(1) = | Tn | = o (x) as P
n<x
or
Bt
(ii) 2 ———— & t °© , but not both.

p p

He could not decide which was true. We shall show

(¢ -1)2
Pt NN
p p
Consider
[ ,(\2 oo __2
gls) = ((s) <2;—“ @f;) .

Then g(s) has an analytic continuation to Re s> 1 except for a

pole of order 2 at s =1,

Moreover,
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2
) (r -1)
gla) = 1M 2~ 4 )
D p°
and it is easily seen that
2
= (T_-1)
log gls) = _ _P + g, (s)

p S

where g1(s) is analytic for Re s > 4. Therefore, we find

2
= (t -1
== P - 1
%_53_. 2 log (5_1)+g2(5),
where g2(s) is analytic as 8 -— 1+, Choosing s =1 + ---—-——10; -

reveals, in a straightforward manner,

= ()
—_— >>  log log x.

pP<x p

In fact, one can show

2
(T -1
S S ) = (2 + o (1)) log log x,
p<x p -

by standard methods.

Shortly after this conference, Professor K, Ramachandra

suggested that it may be possible to show effectively,
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,. 2/3
’(‘n = Jz-(exp (E__(AQE__nL__. ))

(lop log n)A

for some A > O, by utilising the theorem in {11] .
By the theorem of landau, it follows that

— 1
Z (7% -1)lgp > oxf
pP<X P

for some c¢ > 0. This, however, is ineffective, but can be made effective
by an elaborate averaging argument carried out in r1 1_] s which we shall not
discuss here. By decomposing the interval [1, x] into 0(log x)

intervals, it follows that for some wu,

i
= 2 <
= _ (To-1) > ._c.‘:l__z_

u<p<2u P (log 1)
2 g
Tp>1

As before, it is easily deduced that for some m < 2% log u,

~m~1 2 3 om

card (u <p <2u : e <'Z“p-1ge Zma
Proceeding as before, we find finally,

3

2/
c¢(log n)
T, o= (exp ( )) .
1 Q ? (1og log n)5/3

Acknowledgements. I would like to thank Professor K. Ramachandra

for bringing Elliott's conjecture to my attention and Matscience (Madras)
for their financial support and hospitality during the Conference.

R. Balasubramanian and I thank Prof. A. Selberg for suggesting the main

ideas which led to our result.



136

References

R. Balasubramanian and M, Ram Muriy, An.fl—%heorem for

Ramanujan's ¥-function, to appear.

P, Deligne, la conjecture de Weil, I, Publ. Math., I.H.E.S.,
43(1974) 273-307.
(See also, Formes modularies et representations l-adiques,

Springer lecture notes, 179 (1971) 139~172.)

P.D.T.A. Elliott, Mean value theorems for multiplicative
functions bounded in mean o< —power, o > 1, J, Australian

Math. Soc. (Series &) 2¢ (1980) 177-205.

G.H. Hardy, Ramanujan, Cambridge University Press (1940)

pp. 178-180.

E. Hecke, Mathemntische Werke, Vandenhoeck und Ruprecht,

Gottingen (1959).

H. Joris, An {)-result for coefficients of cusp forms,

Mathemtika, 22 (1975) 12-19,

L.J. Mordell, On Ramanujan's empirical expansions of modul.r

functions, Proc. Camb. Phil. Soc., 19 (1917) 117-124.



10

1.

137

H. Petersson, Konstruktion der Samtlichen losunpen ejner
Rieminnachen Funktional gleichens durch Dirichlet-Reihen
mit Eulerschen Produktenwicklung, I, Math. Ann., 116 (1939)

LO1-412,

S. Ramanujan, On certain arithmetical functions, Trans.

Cambr. Phil. Soc. 22 (1916) 159-184.,

R.A. Renkin, An {2-result for coefficients of cusp forms,

Math. Ann. 203 (1973) 239-250,

K. Ramachandra and R. Balasubramanian, Some problems in

analytic number theory II, (to appear).

‘M. Ram Murty

School of Mathematics

Tata Institute of Fundamental Research
Homi Bhabha Road

Bombay 400 005

INDIA

kc.20.6.81



