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Let f be a normalized Hecke eigenform of weight k ≥ 4 on Γ0(N). Let λf (n) denote the
eigenvalue of the nth Hecke operator acting on f . We show that the number of n such
that λf (n) takes a given value coprime to 2, is finite. We also treat the case of levels
2aN0 with a arbitrary and N0 = 1, 3, 5, 15 and 17. We discuss the relationship of these
results to the classical conjecture of Lang and Trotter.

Keywords: Modular forms; Fourier coefficients; congruences; Lang–Trotter conjecture.

Mathematics Subject Classification 2000: 11F30, 11F33, 11F11, 11J86

1. Introduction

Let f be a holomorphic cuspidal normalized eigenform of weight k ≥ 4 of level N

and trivial Nebentypus. We write

f(z) =
∞∑

n=1

λf (n)e2πinz

for its Fourier expansion at i∞ with λf (1) = 1. It is well known that the field Kf

generated by the values λf (n), as n ranges over all the positive integers, is of finite
degree over Q. We write Of for its ring of integers. We prove the following.

Theorem 1.1. Let f be a holomorphic cuspidal normalized eigenform of weight
k ≥ 4 and level N with trivial Nebentypus. Suppose that

λf (p) ≡ 0 (mod 2)
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for every prime p ≥ c0. If α ∈ Of is coprime to 2, then the number of solutions of
the equation

λf (n) = α

is bounded. Moreover, there is an effectively computable constant (independent of f)
c = c(α, c0) > 0 such that all solutions satisfy the inequality

n ≤ exp(|N(α)|c),
where N(α) is the norm of α from Kf to Q.

We make a few remarks concerning the theorem. The special case k = 12 and
f = ∆, Ramanujan’s cusp form, was discussed in detail by the authors and Shorey
in [15]. The fact that ∆ satisfies the hypothesis of the theorem is a consequence of
Jacobi’s celebrated identity:

∞∏
n=1

(1 − q2n)(1 + q2n−1z2)(1 + q2n−1z−2) =
∞∑

n=−∞
qn2

z2n.

Indeed, replacing q by q4 and z by q2 (and taking into account the factor of two
that appears on the left) gives rise to the identity

q

∞∏
n=1

(1 − q8n)(1 + q8n)2 =
∞∑

n=0

q(2n+1)2 .

Thus, if τ denotes Ramanujan’s function, then
∞∑

n=1

τ(n)qn = q

∞∏
n=1

(1 − qn)24

≡ q

∞∏
n=1

(1 + q8n)3 (mod 2)

≡
∞∑

n=0

q(2n+1)2 (mod 2).

Thus, τ(n) is odd if and only if n is an odd square. In particular, τ(p) is even for
every prime p.

Let us now discuss the level 1 case in some detail. In addition to the weight
12 case, the hypothesis of Theorem 1.1 is also satisfied by the unique normalized
cuspidal eigenforms of weights 16, 18, 20, 22 and 26. Indeed, if

E4 := 1 + 240
∞∑

n=1

σ3(n)qn,

E6 := 1 − 504
∞∑

n=1

σ5(n)qn,
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are the classical Eisenstein series of weight 4 and 6 respectively, where

σr(n) =
∑
d|n

dr,

then we may write these cusp forms as ∆E4, ∆E6, ∆E2
4 , ∆E4E6, and ∆E2

4E2
6

respectively. As E4 and E6 are both congruent to 1 (mod2), we deduce again that
λf (n) is odd if and only if n is an odd square, for each of these eigenforms.

For k = 24, there are two such cuspidal eigenforms given by [7]:

∆E3
4 − (156 ± 12

√
144169)∆2.

From this expression, it is clear that modulo 2 is congruent to ∆ so that λf (n) is
odd if and only if n is an odd square. Hence, the theorem applies to all normalized
cuspidal eigenforms of weight k ≤ 26 and level 1.

In fact, thanks to some explicit computations of Rankin [17], more can be said.
The normalized eigenforms of weights k = 24, 28, 30, 32, 34, and 38 can be written
explicitly as

Pk + (uk ± ηk)Qk

where k, Pk, Qk, uk, ηk are given by the following table:

k Pk Qk uk ηk

24 ∆E2
6 ∆2 1572 12

√
144169

28 ∆E2
8 ∆2E4 −5076 108

√
18209

30 ∆E8E10 ∆2E6 4128 96
√

51349

32 ∆E2
10 ∆2E8 20496 336

√
23323

34 ∆E8E14 ∆2E10 −61272 72
√

2356201

38 ∆E6E2
10 ∆2E14 96144 48

√
63737521

We note that uk ± ηk is even in each of the above cases. Thus, the eigenform is
congruent to Pk modulo 2. Now,

E8 = 1 + 480
∞∑

n=1

σ7(n)qn,

E10 = 1 − 264
∞∑

n=1

σ9(n)qn,

E12 = 1 +
65520
691

∞∑
n=1

σ11(n)qn,

and

E14 = 1 − 24
∞∑

n=1

σ13(n)qn.

In
t. 

J.
 N

um
be

r 
T

he
or

y 
20

07
.0

3:
45

5-
47

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

N
ST

IT
U

T
E

 O
F 

M
A

T
H

E
M

A
T

IC
A

L
 S

C
IE

N
C

E
S 

on
 0

3/
22

/1
6.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



August 31, 2007 13:50 WSPC/INSTRUCTION FILE 00103

458 M. Ram Murty & V. Kumar Murty

It is easily checked that Pk ≡ ∆ (mod 2) and so the hypotheses of Theorem 1.1
are satisfied in each of these cases. Thus, in each of the weights k ≤ 38, k �= 36,
any normalized Hecke eigenform of weight k and level 1 satisfies the hypotheses
of Theorem 1.1. For the remaining case k = 36, we observe with Rankin [17] that
there are now 3 eigenforms and they are of the form

E10E14∆ + µE2
6∆2 + ν∆3,

but µ and ν are not explicitly determined in Rankin’s paper. In theory, this can
be done since it involves only the solving of some cubic equations. However, it is
possible to prove a general theorem using some deeper theorems in the theory of
�-adic representations.

Indeed, using the theory of modular forms modulo 2 (see, for example, [18,
p. 115]), we see that any cusp form modulo 2 is a polynomial in ∆ and the action
of the Hecke algebra on modular forms mod 2 is locally nilpotent. This implies in
particular that for any normalized Hecke cusp form f of weight k and level 1, we
have λf (p) ≡ 0 modulo 2 for all odd primes p. More precisely, what this means is
the following. Let Tp denote the pth Hecke operator. Then, modulo 2, Tp(∆i) is a
linear combination of ∆j with j < i. Hence Theorem 1.1 applies for all cuspidal
eigenforms belonging to the full modular group. This can also be seen in terms of
�-adic representations attached to modular forms. In our context, for each prime �,
a normalized Hecke eigenform f gives rise to a λ-adic representation with λ a prime
ideal of Of above �,

ρλ : Gal(Q/Q) → GL2(Of,λ),

which is unramified at � and the primes dividing N . For p coprime to �N , we have
that

tr(ρ(Frobp)) = λf (p),

and

det(ρ(Frobp)) = pk−1,

by a well-known theorem of Deligne [4]. If we apply this to our context with � = 2
and N = 1, we get a representation

ρ : Gal(Q/Q) → GL2(F2)

ramified only at 2. Such representations are trivial, by a theorem of Tate [21]. Hence
the trace of the Frobenius automorphism is even and we obtain our result. That is,
in the level 1 case, the hypotheses of Theorem 1.1 are satisfied and so, we record
these observations in the following:

Theorem 1.2. Let f be a normalized Hecke cuspidal eigenform of weight k ≥ 4 for
the full modular group. Let α ∈ Of be coprime to 2. Then, the number of solutions
of the equation

λf (n) = α
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is finite. Moreover, there is an effectively computable constant c = c(α) > 0 such
that all the solutions satisfy the inequality

n ≤ exp(|N(α)|c),
where N(α) is the norm of α from Kf to Q.

Theorem 1.1 also holds for certain higher levels. For example, if the level is a
power of 2 the result still holds and more generally, if the level is of the form 2aN0

with N0 = 1, 3, 5, 15, or 17, thanks to a theorem of Ono and Taguchi [16]. In the
last section, we give a further example of modular forms for which Theorem 1.1
is true.

Theorem 1.1 resolves special cases of a conjecture that is in the spirit of Lang and
Trotter [8]. They were working in the context of elliptic curves, or equivalently, with
forms f of weight 2 and with Kf = Q. They developed a probabilistic model, on the
basis of which they conjectured the frequency of values of the λf (p). Extrapolating
that model for higher weight (as done in [10]), it is expected that for forms of weight
≥ 2 for which [Kf : Q] ≥ 3, a given value is attained by the λf (p) only a finite
number of times. For forms of weight ≥ 3 and for which [Kf : Q] ≥ 2 and for all
forms of weight ≥ 4, it is again expected that a given value is attained by the λf (p)
only a finite number of times. Following [10], we refer to this as the Lang–Trotter
conjecture.

One can formulate what we call the strong Lang–Trotter conjecture, that in
fact, the number of natural numbers n with λf (n) = α is finite whenever the weight
k ≥ 4. The argument used to derive Theorem 1.1 implies

Theorem 1.3. The Lang–Trotter conjecture implies the strong Lang–Trotter
conjecture.

The fact that these two conjectures are equivalent may be intuitively clear in
the case f has rational integer coefficients (in view of the multiplicativity of the
coefficients). However, in the other cases, it is far from being obvious because of the
presence of infinitely many units (since it is known that Kf is totally real). In fact,
we will prove Theorem 1.3 using some of the deeper results of transcendental and
algebraic number theory.

If we assume the abc conjecture, we can deduce a substantial improvement of
the bound in Theorem 1.1:

Theorem 1.4. Let f be as in Theorem 1.1 and assume the abc conjecture for the
field Kf . For any ε > 0, there is a constant c = c(Kf , ε) such that every solution of
λf (n) = α for a fixed α ∈ Of satisfies

n ≤ c|N(α)|1+ε.

The value of c in the above theorem can be computed from our arguments below
if one assumes a uniform version of the abc conjecture for number fields.
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2. Proof of Theorem 1.1

To prove Theorem 1.1, we need some results from the theory of linear forms in
logarithms.

Proposition 2.1 [2]. Let α1, . . . , αn be algebraic numbers different from 0 and
b1, . . . , bn be rational integers. Let Ai = max(H(αi), e) and H(α) denote the naive
height (maximum of the coefficients of the minimal polynomial) and

B = max(|b1|, . . . , |bn|, e).
Set

Ω =
n∏

i=1

log Ai,

and d = [Q(α1, . . . , αn) : Q]. Let

Λ := αb1
1 · · ·αbn

n − 1.

Then, either Λ = 0 or

|Λ| > exp(−(16nd)2(n+2)Ω(log B)).

We will also need bounds on the solutions of various hyperelliptic and superel-
liptic curves. In 1969, Baker gave the first such bounds for rational integer solutions
of the hyperelliptic equation y2 = f(x) when f(x) ∈ Z[x] has at least three sim-
ple zeros. These results have been extended to algebraic number fields by various
authors, beginning with Sprindzuk, Brindza, Schmidt, Poulakis and finally Voutier
[23]. To state these results, we begin with some notation.

Let K be an algebraic number field of degree d and absolute discriminant DK

and OK the ring of integers of K. For a point

x = [x0, . . . , xn] ∈ Pn(K),

we define the field height of x as

HK(x) =
∏
v

max(|x0|v, . . . , |xn|v)dv ,

where the product is over all archimedean valuations and dv are the local degrees
(that is, dv = 1 or 2 according as v is real or complex). If α ∈ K, we define HK(α) to
be HK([1, α]) and if f is a polynomial in K[x], we set HK(f) to be the field height
of the point in projective space determined by the coefficients of f . We define the
size of α, denoted s(α), to be the maximum abolute value of all the conjugates of α.
We also let log+ |x| = max(1, log |x|) for any non-zero real number x.

We now state a special case of the main theorem of [23] that is needed for our
purpose.

Proposition 2.2 [23]. Let K be an algebraic number field of degree d and suppose
f(x) ∈ K[x] has degree n. Suppose further that f has at least three distinct simple
roots. Then, all solutions (x, y) of y2 = f(x) with x ∈ OK satisfy

max(HK(x), HK(y)) < exp(c1(n, d)V1(log+ V1)6n2d)
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where

V1 = D6n2

K HK(f)30n2
,

and c1(n, d) is an effectively computable constant depending on n and d.

The following proposition, due to Sprindzuk, gives upper bounds for solutions
of the Thue equation in algebraic number fields.

Proposition 2.3 [20]. Let F (x, y) ∈ OK [x, y] be a binary form of degree n and
suppose that F (x, 1) has at least three distinct zeros. If 0 �= α ∈ OK , then all
solutions x, y ∈ OK such that

F (x, y) = α

have size bounded by

c1(s(α)H(F ))c2

where c1, c2 are effectively computable constants depending only on the regulator and
the degree of the splitting field of F (x, 1).

Proof. This is [20, p. 82, Theorem 6.1].

We begin by applying this result (as in [15]) to deduce the following:

Proposition 2.4. Let f be a normalized cuspidal eigenform of weight k ≥ 4 and
level N . There is an effectively computable constant c1 > 0 such that for m ≥ 2 and
every prime p,

|λf (pm)| ≥ |γf (p, m)|p k−1
2 (m−c1 log m)

where

γf (p, m) =

{
1 if m is even

λf (p) if m is odd.
(1)

When m is odd, λf (pm) is divisible by λf (p).

Proof. By Deligne [5], we may write

λf (pm) =
αm+1

p − βm+1
p

αp − βp
,

where |αp| = |βp| = p(k−1)/2 and αpβp = pk−1. Suppose first that m is odd. Since

xn − yn = (x − y)(xn−1 + xn−2y + · · · + xyn−2 + yn−1),

we see that

αm+1
p − βm+1

p = (α2
p − β2

p)(αm−1
p + αm−3

p β2
p + · · · + βm−1

p ),

from which we see that λf (p) = αp +βp divides λf (pm) when m is odd. This proves
the second assertion of the proposition. If now m is odd and λf (p) �= 0, then

|λf (pm)/λf (p)| = |αm+1
p − βm+1

p ||α2
p − β2

p|−1.
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Since

|α2
p − β2

p | ≤ 2pk−1,

we find

|λf (pm)/λf (p)| ≥ 1
2
p(k−1)(m−1)/2|(αp/βp)m+1 − 1|.

Noting that log H(αp/βp) 	 log p, an application of Proposition 2.1 gives∣∣∣∣∣αm+1
p − βm+1

p

βm+1
p

∣∣∣∣∣ > p−C log m.

Therefore,

|λf (pm)/λf (p)| ≥ 1
2
p

k−1
2 (m−c1 log m)

for some effective constant c1 > 0. The proof for m even is similar.

We remark that the constant c1 above depends only on the weight k. In fact,
the argument shows that

c1 	 k2[Kf : Q]8.

We now study the implication of the previous proposition to the study of the
equation λf (n) = α with α coprime to 2 and initiate our proof of Theorem 1.1.
Indeed, starting from the equation∏

pβ ||n
λf (pβ) = α,

we observe that all the β are even and we get

|N(α)| =
∏
σ

∏
pβ ||n

|λfσ (pβ)|,

where the outer product is over all distinct embeddings of Kf into C. Since,
γfσ(p, β) = 1, by Proposition 2.4, we deduce

p
k−1
2 [Kf :Q](β−c1 log β) ≤ |N(α)|

so that for β large, pβ is bounded.
We have to analyze what happens for small β.
Suppose for t ≥ c2, we have

1
2
t − c1 log t ≥ 0.

Write n = n1n2 where (n1, n2) = 1, and n1 is composed of prime powers pβ with
β < c2 and pβ ||n2 implies that β ≥ c2. Then, by Proposition 2.4, we get

|λf (n2)| ≥ n
(k−1)/4
2 .

Hence,

|N(α)| ≥ |N(λf (n1))N(λf (n2))| ≥ n
[Kf :Q](k−1)/4
2 .
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Thus, n2 is bounded. This means that λf (n2) can take on only a finite number
of values and among these values, we consider only those that divide α. For this
purpose, we will study

λf (n1) = α′,

for some finite set of divisors α′ of α. Since λf is multiplicative, we are reduced to
studying the ideal equation of the form

(λf (pm)) = a

with m bounded and a an ideal divisor of (a). To study λf (pm) for m ≥ 6, we
proceed as in [15]. However, we need to refine our analysis. To this end, we prove
the following lemma:

Lemma 2.5. Let f be a Hecke eigenform of weight k and level N . Then for all p

sufficiently large, either λf (p) = 0 or λf (pa) �= 0 for all a ≥ 1.

Proof. As in [15, Lemma 1], we write

λf (pm) = γf (p, m)
[m/2]∏
r=1

(αp − ζrβp)(αp − ζ−rβp)

where ζ is a primitive (m+1)st root of unity. Suppose that λf (p) �= 0. If λf (pm) = 0
then we must have αp = ηβp for some root of unity η ∈ Q(e

2πi
m+1 ). Since αp, βp have

degree bounded by 2[Kf : Q], we see that η has degree bounded by 2[Kf : Q]. Since
λf (p) �= 0, we have η �= −1. Also, writing βp = θp(k−1)/2, and using αpβp = pk−1,
we get θ2η = 1 so that θ is also a root of unity of degree at most 4[Kf : Q]. Let
K̃f be the field obtained from Kf by adjoining all the roots of unity of degree
≤ 4[Kf : Q]. Then K̃f has bounded degree over Q. But then

λf (p) = αp + βp = (1 + η)βp = p(k−1)/2(θ + θ−1).

As k is even, it follows that
√

p(θ + θ−1) ∈ K̃f . Since θ ∈ K̃f , and η �= −1, we
deduce that

√
p ∈ K̃f . This can happen for only finitely many p since K̃f has only

finitely many quadratic subfields. This completes the proof.

We note for future reference that when m is even, the proof of Proposition 2.5
shows that λf (pm) is a binary form fm(λf (p)2, pk−1) where f has degree m/2 and
integer coefficients. Indeed, we have

fm(x, y) =
[m/2]∏
r=1

(x − 4y cos2(πr/(m + 1))),

since

(αp − ζrβp)(αp − ζ−rβp) = α2
p + β2

p − 2pk−1 cos 2πr/(m + 1),

which is easily seen to be

λf (p)2 − 4pk−1 cos2 πr/(m + 1).
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We are now ready to complete the proof of Theorem 1.1. We have already
observed that if α is coprime to 2, then the equation

λf (n) = α

implies that n is of the form ab with the prime factors of a bounded by c0 (as
given in Theorem 1.1) and with b an odd square since for any prime pβ||b with β

odd, we have λf (p) which is divisible by 2 divides λf (pβ), under the conditions of
Theorem 1.1. (There is no connection between this factorization of n and the earlier
factorization of n = n1n2 needed for our preliminary analysis.) By Proposition 2.4,
we may assume that if we write

n =
∏

pm||n
pm,

then m is bounded. Thus a is bounded. Let us consider now the shape of b and
pm||b. For m ≥ 6, m even, λf (pm) is a binary form in λf (p) and pk−1 of degree ≥ 3.
Let h be the class number of Kf . Writing

(α) = pe1
1 · · · pet

t ,

we have for some fi ≤ ei

(λf (pm)) = pf1
1 · · · pft

t .

Fix ρi such that

ph
i = (ρi).

Then,

(λf (pm))h = (α′),

where

α′ = ρf1
1 · · · ρft

t .

Thus,

λf (pm)h = εα′,

for some unit ε. We write

ε = εa1
1 · · · εat

t ,

for a fundamental system of units ε1, . . . , εr of Of . We write

ai = ti(mh/2) + δi, 0 ≤ δi < mh/2,

so that δi is bounded. Thus, for some unit u, we can write

λf (pm)h = ε0u
mh/2α′,

from which we get

λf (pm) = um/2(ε0α′)1/h.

As noted earlier, the left-hand side is a binary form of degree m/2. The um/2 can
be absorbed into the binary form of degree m/2 given by λf (pm). Thus, with earlier
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notation, we have

fm(λf (p)2/u, pk−1/u) = (ε0α′)1/h.

There are only a finite number of possible values of ε0. We therefore deduce in this
case that for m ≥ 6, the equation has only finitely many solutions. In particular,
pk−1/u has bounded norm and so there are only finitely many possibilities for p.
These primes can be effectively bounded using Proposition 2.3.

This leaves the case m = 2, 4 for discussion. Let us consider the case m = 2. In
this case, we have the equation

λf (p2) = λf (p)2 − pk−1,

as is easily verified. Thus, for a specified value β of λf (p2), the equation gives an
integral point (p, λf (p)) on the elliptic curve

y2 = x3 + β,

if k = 4. If k ≥ 5, we have the integral point (p, λf (p)) on the hyperelliptic curve

y2 = xk−1 + β.

In any case, there are only finitely many Of integral solutions. Note that λf (p2)
can range over a finite collection of values (upto associates). We treat this difficulty,
as before, by writing

λf (p2) = εα′,

and ε = ε0u
2(k−1), with u a unit, using the Dirichlet unit theorem. For m = 4, we

proceed similarly. We have

(2λf (p)2 − 3pk−1)2 = 4λf (p4) + 5p2(k−1),

so that for a fixed value β of λf (p4), we have an integral point (p, 2λf (p)2 − 3pk−1)
on the curve

y2 = 5x2(k−1) + 4β.

This case is now handled in an identical fashion as the case m = 2. Thus, the
equation

λf (n) = α

has only finitely many solutions. Moreover, Proposition 2.2 can be used to bound
these solutions and this completes the proof of Theorem 1.1.

We now make some remarks on the size of the solutions. It is clear from the
preceding argument that for m sufficiently large,

λf (pm) = α′

implies that pm is itself bounded by an absolute constant. As the number of prime
ideal divisors of α are bounded by log |N(α)|, this would give us a bound of

C log |N(α)| = |N(α)|c1 ,

for the size of any solution.
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For m ≥ 6, m bounded, the results of Sprindzuk (Proposition 2.3) alluded to
earlier give an absolute constant c2 such that

max(λf (p)2, pk−1) ≤ |N(α)|c2 .

It will be noted that the cases m = 2 and m = 4 led to poor bounds above arising
from Proposition 2.2. One can obtain better results assuming the abc conjecture for
number fields. We recall the formulation of this conjecture. Let K be an algebraic
number field. Suppose a, b, c ∈ K∗ such that a + b + c = 0. Define

radK(a, b, c) =
∏
p

NK/Q(p)

where the product is over those prime ideals p for which the numbers

||a||p, ||b||p, ||c||p
are unequal. Then, for any ε > 0, there is a constant CK,ε such that

HK(a, b, c) ≤ CK,ε(radK(a, b, c))1+ε.

A stronger version predicts that one may take replace CK,ε by

C [K:Q]
ε D1+ε

K ,

where Cε depends only on ε. We refer the reader to Vojta [22] for further details.
But we do not need the stronger version of the abc conjecture here. We will simply
use the weaker version to treat the equation

λf (p2) = λf (p)2 − pk−1.

Using the abc conjecture for number fields, we easily see that any solution of the
equations treated in the cases m = 2 and m = 4 has height bounded by

CK,εN(α)1+ε.

In this way, we deduce the estimates of Theorem 1.4. We emphasize that the abc

conjecture is only needed in the estimation of size of solutions in the m = 2 and
m = 4 cases.

3. Proof of Theorem 1.3

We want to show that the Lang–Trotter conjecture implies the strong Lang–Trotter
conjecture. We proceed as in the previous section. From the equation

λf (n) = α,

we proceed to the ideal equation∏
pβ ||n

(λf (pβ)) = (α) = pe1
1 · · · peg

g ,

from which we deduce that

(λf (pβ)) = pf1
1 · · · pfg

g ,
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for some fi ≤ ei. As before, taking hth powers, we get

λf (pβ)h = εα′,

for some unit ε and we deduce analogously the equation

λf (pβ) = α′′,

with α′′ ranging over a finite set of algebraic integers. In the earlier discussion, we
assumed β even but now we must consider β odd too. In this situation, λf (pβ)/λf (p)
is a binary form of degree (β − 1)/2. If β ≥ 5, the preceding discussion applies and
we deduce a finite set of possible values of pβ. If β = 1, the Lang–Trotter conjecture
implies only finitely many values of p exist for which the equation holds. If β = 3,
we note the identity

λf (p3) = λf (p)(λf (p)2 − 2pk−1).

Arguing as before, we get the equation

λf (p)2 − 2pk−1 = α′′′,

where α′′′ ranges over a finite set of algebraic integers. This means that (p, λf (p))
lies on the curve

y2 = 2xk−1 + α′′′.

This is a hyperelliptic curve if k ≥ 4 and there are only finitely many possible values
of p. This completes the proof of Theorem 1.3.

4. An Example

In this section, we will give an example of an eigenform of weight k and level N > 1
to which our Theorem 1.1 applies.

This is provided by the Calabi–Yau three-fold which has an affine model given by

x + x−1 + y + y−1 + z + z−1 + w + w−1 = 0.

If we let N∗
p be the number of solutions over Fp, with xyzw �= 0, then one can show

[6] for p �= 2, 3

N∗
p = p3 − 2p2 − ap − 7,

where an is the nth Fourier coefficient of the weight 4 cusp form of level 8 given by

η(2z)4η(4z)4,

with η(z) the Dedekind η-function. It is easy to see that by pairing up (x, y, z, w)
with (x−1, y−1, z−1, w−1) in the affine model, N∗

p is even for p �= 2, 3. By direct
checking, we see a2 = 0, and a3 = −4. Thus, ap is even for every prime p. Hence
Theorem 1.1 applies to this eigenform of weight 4 and level 8.
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Another way of seeing this suggested by the referee is by noting that the form
in question is

q

∞∏
n=1

(1 − q2n)4(1 − q4n)4

≡ q

∞∏
n=1

(1 − q8n)(1 − q16n)

≡ q

∞∏
n=1

(1 − qn)24

≡ ∆ (mod 2).

Here, q denotes as usual e2πiz .
This particular eigenform has an interesting connection to Apéry numbers, de-

fined as

An :=
n∑

j=0

(
n + j

j

)2 (
n

j

)2

.

These numbers were used by Roger Apéry in his famous 1978 proof that ζ(3) is
irrational. In 1987, Beukers [3] proved that for every odd prime p, we have

ap ≡ A(p−1)/2 (mod p).

Extending the work of Ishikawa, Ahlgren and Ono [1] showed the stronger
congruence

ap ≡ A(p−1)/2 (mod p2).

5. Concluding Remarks

To apply Theorem 1.1 to any specific eigenform, it suffices to verify that λf (p)
is even for a finite number of primes to ensure that it is the case for all primes
sufficiently large. If the level is coprime to 2, then there is an effectively computable
constant c > 0 such that λf (p) ≡ 0 (mod 2) for all p < N c implies that this holds
for all p. This follows from the effective version of the Chebotarev density theorem
(see, for example, [12]).

An important question is whether one can obtain uniform bounds for the solu-
tions in Theorem 1.1. This is indeed possible and our methods can be fine tuned
to obtain such results. However, the bounds are again exponential and these poor
estimates arise from the fact that we do not have good estimates for integral points
on hyperelliptic curves. Again, strong versions of the abc conjecture for number
fields can be invoked to improve these bounds.

These methods are versatile to deal with other related questions. For example,
one can study the growth of the largest prime ideal factor of λf (pn) for fixed prime
p and varying n, as is done in [13]. They can also be combined with the method
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of Dirichlet series and employed in the study of the number of solutions of the
equation |N(λf (α))| = a for a fixed positive integer a as in [14]. In both instances,
transcendental number theory plays a fundamental role as it did in this paper.
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