
ACTA ARITHMETICA

133.4 (2008)

Transcendental values of the p-adic digamma function

by

M. Ram Murty (Kingston) and N. Saradha (Mumbai)

In honour of Professor Wolfgang Schmidt

1. Introduction. Let ψ(x) denote the digamma function. This is the
logarithmic derivative of Euler’s Γ -function. It is known that ψ(1) = −γ,
where γ is Euler’s constant. The study of the values of the digamma function
at rational arguments was the focus of our earlier paper [8]. There, we showed
that at most one of the numbers in the list:

γ, ψ(r/q), gcd(r, q) = 1, 1 ≤ r ≤ q,
is algebraic. It is reasonable to conjecture that all of the above numbers are
transcendental.

In a related context, Lehmer [6] defined generalized Euler constants
γ(r, q) by the formula

γ(r, q) := lim
x→∞

( ∑
n≤x, n≡r(mod q)

1
n
− log x

q

)
.

One expects that all of these generalized Euler constants are transcendental.
In [8], it was shown that at most one of the numbers

γ, γ(r, q), gcd(r, q) = 1, 1 ≤ r ≤ q,
is algebraic.

When we obtained this result, Professor Waldschmidt indicated that
it would be interesting to investigate the arithmetic nature of the p-adic
analogues of these numbers. There are two different definitions available in
the literature, one due to Morita [7] and another due to Diamond [4]. The
p-adic analogues of the digamma function and Euler’s constant defined by
Diamond possess several nice properties as in the classical case. Thus, one
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may expect that arithmetic results similar to the ones stated above also hold
in the p-adic case. This turns out to be the case and the precise statement
is given in Theorem 1. Though there are similarities in the set up, there
are new technical difficulties to be overcome. As in the “classical” case, the
proof depends on the p-adic analogue of Baker’s theory of linear forms in
logarithms. Unlike the classical case, it involves a clever application of the
elementary Euler–Fermat theorem (see Section 3). Further, one needs to find
a suitable set of multiplicatively independent units in a cyclotomic field. Our
hope is that this study will eventually lead to a proof of the transcendence
of the p-adic Euler constant as well as shed some light on the classical Euler
constant. Indeed, Proposition 5 shows that there is a relationship between
the p-adic digamma function and the classical digamma function. Thus,
it is not unreasonable to study carefully the p-adic setting and see what
generalizes and what does not.

Next, we turn our attention to Lp(s, f), the p-adic analogue of the clas-
sical L-function L(s, f) studied in [8]. The study of these p-adic L-functions
is very much in the spirit of Kubota, Leopoldt and Iwasawa. Before we pro-
ceed, it may help the reader if we say a few words about the larger relevance
of such a study.

In the second half of the 20th century, Kubota, Leopoldt and Iwasawa
introduced the p-adic analogue of the classical Dirichlet L-function. The
study of the p-adic L-functions forms the basis of what is now called Iwa-
sawa theory. Since then, many authors have introduced p-adic analogues
of L-series attached to modular forms or more generally to automorphic
forms. These L-series have propelled the study of higher dimensional ana-
logues of Iwasawa’s theory. This motif has been useful in the study of special
values of L-series and their arithmetic meaning. We envisage a similar ap-
plication of the results we are about to derive. As in the classical case, the
non-vanishing of Lp(1, f) is an important question. In this direction, Okada
[10] showed a connection between the non-vanishing of L(1, f) and Lp(1, f)
(see Proposition 5). Our idea is to bring forth the utility of this result along
with several criteria that we gave in [8] for the non-vanishing of L(1, f).
For instance, we are able to show the transcendence of Lp(1, f) (see Theo-
rem 6).

In [8], we showed that the vanishing of a certain L-function at s = 1 was
equivalent to the existence of relations among special values of the digamma
function. In a similar vein, the vanishing of a certain p-adic L-function will
imply relations among special values of the p-adic digamma function.

Let p be a prime number which will be fixed throughout this paper once
and for all. Let Qp denote the p-adic completion of the rationals Q, and Zp
the p-adic completion of the integers Z. Let Cp be the completion of the
algebraic closure of Qp.
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In 1975, Morita [7] introduced the p-adic analogue Γp of the Γ -function
by defining for all natural numbers

Γp(n) :=
∏

1≤t≤n, p-t

t,

and extending it to a continuous function on Zp. Two years later, Diamond
[4] defined the p-adic analogues of the digamma function and Euler’s con-
stant. We denote these by ψp(x) and γp, respectively. He also defined p-adic
analogues of the generalized Euler constants, γp(r, q). We will recall these
definitions below in Section 2.

We will prove:

Theorem 1. Let q be prime. Then at most one of the numbers

γp, γp(r, q), 1 ≤ r < q,

is algebraic.

As discussed in [4], there are several ways to define a p-adic analogue
of the digamma function. One way is as follows. Let ν(x) denote the p-adic
valuation with ν(p) = 1 and log be the p-adic logarithm (defined below in
Section 2). Let

HN (x) = lim
k→∞

1
pk

pk−1∑
n=0

fN (x+ n)

where fN (x) = x log x − x if ν(x) < N and zero otherwise. One can show
that HN is locally analytic on Cp. For x ∈ Cp \ Zp, the sequence of values
HN (x) with N ≥ 1 eventually becomes constant with the value Gp(x) (say),
and this is Diamond’s p-adic analogue of the logarithm of the Γ -function.
Following [4], we denote the p-adic derivative of Gp(x) by ψp(x). One can
also view the functions HN as suitable p-adic analogues of the logarithm of
the classical Γ -function. For instance, H1 is the logarithm of Morita’s p-adic
gamma function. With this understanding, we prove:

Theorem 2. Let q be prime.

(i) If q = p, the numbers ψp(r/q) + γp are transcendental for 1 ≤ r < q.
(ii) If q 6= p, let N satisfy the congruence pN ≡ 1 (mod q). Then the

numbers
pN

pN − 1
H ′N (r/q) + γp

are transcendental for 1 ≤ r < q.

This theorem can be viewed as the p-adic analogue of a result of Bund-
schuh [3] that states that all the numbers

(1) ψ(a/q) + γ, gcd(a, q) = 1, 1 ≤ a ≤ q,
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are transcendental. In [8], we rediscovered this result independently and
derived it as a consequence of a theorem of Baker, Birch and Wirsing [2].

In this paper, our approach will be analogous to the one we took in [8].
There, we used the theory of the Hurwitz zeta function to deduce a variety of
results about the values of the digamma function. Here too, we will use the
p-adic analogue of the Hurwitz zeta function as defined by Washington [12].
As in [8], let f be a function defined on the non-negative integers, periodic
with period q and assuming algebraic values. We denote by f̂ the Fourier
transform of f . Recall that this is given by

f̂(n) =
1
q

q∑
a=1

f(a)e2πian/q.

We will say f is of Dirichlet type if f(a) = 0 whenever gcd(a, q) > 1. Inspired
by a question of Chowla, the result of Baker, Birch and Wirsing [2] gave
necessary conditions for the non-vanishing of the infinite series

L(s, f) =
∞∑
n=1

f(n)
ns

at s = 1. In [9], we gave a variant of their result. We combine these two
results as follows.

Proposition 3. Let K be an algebraic number field with K∩Q(ζq) = Q
where ζq is a primitive qth root of unity. Assume that f is a K-valued pe-
riodic function with period q and not identically zero. Then L(1, f) 6= 0 if
f(n) = 0 for 1 < gcd(n, q) < q. If f̂ is of Dirichlet type and q is a prime
power , then L(1, f) 6= 0. If f̂ is of Dirichlet type and q is not a prime power ,
then L(1, f) 6= 0 unless f = λcq for some λ ∈ K where cq(n) denotes the
Ramanujan sum ∑

(a,q)=1

e2πian/q.

In this context, we point out that Okada [10] gave necessary and sufficient
conditions under which L(1, f) 6= 0. Since these conditions are unwieldy,
we prefer to use Proposition 3, as the conditions stated there are more
transparent. It will be fruitful to make Okada’s conditions more lucid for
applications.

Thanks to Baker’s theory of linear forms in logarithms, the non-vanishing
of L(1, f) allows us to deduce that it is transcendental. Thus, the non-
vanishing is the essential ingredient and the above proposition allows us
to deduce this in certain cases. For the purpose of this paper, we need
only consider even functions f . In this case it was shown in the proof of
Theorem 3 of [2] that the condition K ∩ Q(ζq) = Q is redundant. Note
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that this condition is equivalent to the qth cyclotomic polynomial being
irreducible over K. Thus, we have the following proposition.

Proposition 4. Let K be an algebraic number field and f a K-valued
periodic even function with period q and not identically zero. Then L(1, f)
6= 0 if f(n) = 0 for 1 < gcd(n, q) < q. If f̂ is of Dirichlet type and q is a
prime power , then L(1, f) 6= 0. If f̂ is of Dirichlet type and q is not a prime
power , then L(1, f) 6= 0 unless f = λcq for some λ ∈ K where cq(n) denotes
the Ramanujan sum.

We now discuss p-adic analogues of the above proposition. Proceeding as
in [8], one defines the p-adic L-function Lp(s, f) as a linear combination of p-
adic Hurwitz zeta functions. From this definition, it follows that Lp(s, f) ≡ 0
if f is an odd function. So henceforth, we assume that f is an even function.
Now we present Theorem 2 of Okada [10] in which he connects the non-
vanishing of L(1, f) and Lp(1, f).

Proposition 5. Let f be an even function which is algebraic-valued and
with period q. Put f̃ = fχ0 where χ0 is the principal character mod p. Then
Lp(1, f) = 0 if and only if L(1, f̃) = 0. Further , if p - q, then Lp(1, f) = 0 if
and only if L(1, f) = 0.

Proceeding as in [8], Lp(1, f) can be expressed as a linear form in p-adic
logarithms of algebraic numbers with algebraic coefficients. Baker’s theory
has been extended to the p-adic context by several people. In this setting, we
employ a result of Kaufman [5] (see also [11]), together with Proposition 5
to obtain the following two results.

Theorem 6. Let q be a prime and f an algebraic-valued even function
with period q. Then Lp(1, f) is transcendental.

Theorem 7. Let q be greater than 1 and K an algebraic number field.
Suppose that f is a K-valued even function with period q and that Lp(s, f) is
regular at s = 1. Suppose further that p | q and one of the following conditions
holds:

(i) f̃(n) = 0 whenever 1 < gcd(n, q) < q;
(ii) the Fourier transform of f̃ is of Dirichlet type and f̃ 6= λcq for any

λ ∈ K.

Then Lp(1, f) is transcendental.
Suppose that p - q and one of the following conditions holds:

(iii) f(n) = 0 for 1 < gcd(n, q) < q;
(iv) f̂ is of Dirichlet type and f 6= λcq for any λ ∈ K.

Then Lp(1, f) is transcendental.

As a consequence of Theorem 7, we get:
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Corollary 8. The values of Lp(1, χ) as χ ranges over even Dirichlet
characters mod q are linearly independent over Q. Any non-trivial linear
combination of these values is transcendental.

Combining this corollary with Proposition 5 gives:

Corollary 9. Let q be prime and χ range over even non-trivial Dirich-
let characters mod q. Then the L(1, χ) are linearly independent over Q.

Corollary 9 was proved earlier by Baker, Birch and Wirsing [2] using
Baker’s theory of linear forms in logarithms. By combining both the p-adic
theory and the classical theory of linear forms in logarithms, Okada [10]
shows that if χ runs through all the non-principal even Dirichlet characters
mod N and ` runs through all the prime factors of N , then the numbers
L(1, χ) and log ` are linearly independent over Q.

In the next section, we review the definitions of the p-adic analogues of
the digamma function, Euler’s constant and the L-function to set the stage
for the proofs of the above theorems.

2. Preliminaries. Cp is the p-adic analogue of the complex numbers.
We fix once and for all an embedding of Q into Cp. An element of Cp \Q is
called transcendental. We denote by Bn the nth Bernoulli number given by
the coefficient of tn in the power series expansion of

tet

et − 1
.

Let v denote the p-adic valuation in Cp with v(p) = 1 and denote by | · | the
p-adic metric with the normalization |p| = 1/p. Lehmer [6] defined general-
ized Euler constants as follows. Let r, q be positive integers with r ≤ q.
Then

γ(r, q) = lim
x→∞

( ∑
n≤x, n≡r (mod q)

1
n
− 1
q

log x
)
.

One can show that
ψ(r/q) = log q − qγ(r, q).

When r = q = 1, γ(1, 1) = γ is the classical Euler constant and ψ(1) = −γ.
In Cp, the analogous γp(r, q) is defined as follows (see Diamond [4] for details
and motivation). We define the p-adic logarithm as

logp(1 + x) = x− x2/2 + x3/3− x4/4 + · · ·

which is valid for |x|p < 1. We refer the reader to [12] for further details
concerning the p-adic logarithm and its extension to C×p . We will henceforth
write log for the p-adic logarithm. Let r, q be integers with q ≥ 1. Suppose
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that v(r/q) < 0. Define

(2) γp(r, q) = − lim
k→∞

1
qpk

qpk−1∑
m≥1,m≡r (mod q)

logm.

If v(r/q) ≥ 0, we write q = pkq∗ with (p, q∗) = 1 and define

γp(r, q) =
pφ(q∗)

pφ(q∗)−1

∑
n∈N(r,q)

γp(r + nq, pφ(q∗)q),

where

N(r, q) = {n : 0 ≤ n < pφ(q∗), r + nq 6≡ 0 (mod pφ(q∗)+k)}.
We set

γp = γp(0, 1) = − p

p− 1
lim
k→∞

1
pk

pk−1∑
m≥1, (m,p)=1

logm.

Define

ψp(x) = lim
k→∞

1
pk

pk−1∑
n=0

log(x+ n) for any x ∈ Cp.

In Theorem 18 of [4], the following result is established.

Lemma 10. If q > 1 and ζ is a primitive qth root of unity , then

qγp(r, q) = γp −
q−1∑
a=1

ζ−ar log(1− ζa).

From the definition of γp(r, q) in (2), the first part of the following lemma
is immediate. The second part is proved in [4] and appears there as Theo-
rem 19.

Lemma 11. Suppose r, q are positive integers with r < q and v(r/q) < 0.
Then

ψp(r/q) = − log q − γp +
q−1∑
a=1

ζ−ar log(1− ζa),

where ζ denotes a primitive qth root of unity. Write q = pkq∗ with p and q∗

coprime. If ν(r/q) ≥ 0, then for any N such that pN ≡ 1 (mod q∗), we have

pN

pN − 1
H ′N (r/q) = − log q − γp +

q−1∑
a=1

ζ−ar log(1− ζa).

We now proceed to define the p-adic L-function. We refer to Washington
[12] for more details and properties. Let p∗ = p if p > 2 and p∗ = 4 if p = 2.
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Suppose ω(x) is the Dirichlet character with conductor p∗ such that

ω(x) ≡ x (mod p∗).

For any p-adic unit x, let
x = ω(x)〈x〉.

Let K = lcm(p∗, q) and b any integer with p - b. The p-adic partial zeta
function Lp(s, b,K) is defined by

Lp(s, b,K) =
1

s− 1
1
K
〈b〉1−s

∞∑
j=0

(
1− s
j

)
Bj(K/b)j ,

where the Bj ’s denote the Bernoulli numbers. Define

Lp(s, f) =
K∑

b=1, p-b

f(b)Lp(s, b,K).

It is shown in [12] that Lp(s, f) is analytic on

{s ∈ Cp : |s| < p∗p−1/(p−1)},
except for a possible simple pole at s = 1 with residue

Rp(f) =
1
K

K∑
b=1, p - b

f(b).

Hence, for Lp(s, f) to be regular at s = 1, it is necessary and sufficient that
Rp(f) = 0. Suppose χ is a non-principal even Dirichlet character mod q and
χ∗ the associated primitive character and N(χ) the conductor of χ∗. Then

Lp(1, χ) = Lp(1, χ∗)
∏

t|q, t6=p

(
1− χ∗(t)

t

)
.

By Corollary 5.30 and Theorem 5.18 of [12], it follows that Lp(1, χ) 6= 0 and

(3) Lp(1, χ) = c(χ)
N(χ)∑
r=1

χ∗(r) log(1− ζrq/N(χ)),

where c(χ) is an algebraic number and ζ is a primitive qth root of unity.
Okada (see (3.8) of [10]) has shown that if f(b) ∈ K, then

(4) Lp(1, f) =
∑
χ

δχLp(1, χ) +
∑

t|q, t6=p

µt log t,

where δχ and µt are in K and χ runs over all non-principal even characters
mod q. Together with (3) and (4), we see that Lp(1, f) can be expressed
as a linear form in p-adic logarithms of algebraic numbers with algebraic
coefficients. There have been several papers on quantitative results in the
theory of linear forms in p-adic logarithms, the most notable being by Yu
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[13]. Since for the purpose of this paper we need only qualitative results, we
use one of the earliest results by Kaufman [5] in this direction.

Lemma 12. Let α1, . . . , αm be fixed algebraic numbers that are multi-
plicatively independent over Q with height at most h. Let β0, . . . , βm be ar-
bitrary algebraic numbers with height at most H (assumed greater than 1)
and β0 6= 0. There exists a constant c1 > 0 which depends only on the degree
of the number field generated by α1, . . . , αm, β0, β1, . . . , βm such that the fol-
lowing holds. Let K = Q(α1, . . . , αm, β0, β1, . . . , βm) and |αi − 1| < p−c1 for
1 ≤ i ≤ m. Then

|β0 + β1 logα1 + · · ·+ βm logαm| > p−c logH

where c is a constant depending only on p, h,m and [K : Q].

In particular, if α1, . . . , αm are algebraic numbers which are multiplica-
tively independent over Q, then there exists a c1 > 0 as in Lemma 12
such that 1, logα1, . . . , logαm are linearly independent over Q whenever
|αi − 1| < p−c1 for 1 ≤ i ≤ m.

As a consequence of Lemma 12, we get

Corollary 13. Suppose α1, . . . , αm are non-zero algebraic numbers sat-
isfying |αi− 1| < p−c1 for 1 ≤ i ≤ m, with c1 given by Lemma 12. Then, for
any algebraic numbers β1, . . . , βm, the linear form

β1 logα1 + · · ·+ βm logαm
is either zero or transcendental. The former can arise only if α1, . . . , αm are
multiplicatively dependent.

The proof (by induction on m) of this theorem is identical to the complex
case discussed on page 11 of [1].

In the proof of Theorem 1 below, we will need to apply the following
result from the theory of cyclotomic fields.

Lemma 14. Let q be a prime and let ζ be a primitive qth root of unity.
The numbers 1− ζ and

1− ζa

1− ζ
, 1 < a < q/2,

are multiplicatively independent.

Proof. The numbers
1− ζa

1− ζ
, 1 < a < q/2,

comprise a multiplicatively independent system of units in Q(ζ). Thus, if

(1− ζ)b
∏

1<a<q/2

(
1− ζa

1− ζ

)na

= 1
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for certain integers na, b, then, as (q) = (1 − ζ)q−1, and (1 − ζ) is a prime
ideal, we must have b = 0 since the right hand side has no prime divisor.
Consequently, na = 0 for all a because the units in the product are inde-
pendent.

3. Proof of Theorem 1. Let q be prime. Suppose first that γp and
γp(r, q) are both algebraic. Then qγp(r, q) − γp is algebraic. By Lemma 10,
this is equal to

−
q−1∑
a=1

ζ−ar log(1− ζa).

Since
q−1∑
a=1

ζ−ar = −1,

we rewrite this sum as

(5) log(1− ζ)−
q−1∑
a=1

ζ−ar log
(

1− ζa

1− ζ

)
.

Since
1− ζ−a = −ζ−a(1− ζa),

and the p-adic logarithm is zero on roots of unity, we find that

log(1− ζ−a) = log(1− ζa).
Noting that the summands for a = 1 and a = q − 1 in (5) are zero, and
pairing up a with −a, we obtain

(6) qγp(r, q)− γp = log(1− ζ) +
∑

1<a<q/2

(ζar + ζ−ar) log
(

1− ζa

1− ζ

)
.

Observe that for any y with p - y,

log y =
1

p− 1
log(1 + (yp−1 − 1)).

More generally, we have

log y =
1

φ(pM )
log(1 + (yφ(pM ) − 1)).

We write the right hand side of (6) as
1

φ(pM )
log[1− (1− ζ)φ(pM ) − 1]

+
∑

1<a<q/2

ζar + ζ−ar

φ(pM )
log
[
1 +

(
1− ζa

1− ζ

)φ(pM )

− 1
]
.



Transcendental values of p-adic digamma function 359

For y coprime to p, we have by Euler’s theorem,

|yφ(pM ) − 1| < p−M .

Thus, choosing M sufficiently large, we can use Lemma 12 to deduce that
the numbers

1− ζ, 1− ζa

1− ζ
, 1 < a < q/2,

are multiplicatively dependent. But this contradicts Lemma 14. Now sup-
pose that γp(r1, q) and γp(r2, q) are both algebraic. We write

qγp(r1, q)− qγp(r2, q) = −
q∑

a=1

(ζ−ar1 − ζ−ar2) log(1− ζa).

We proceed to rewrite the right hand side as an algebraic linear combination
of

log(1− ζ), log
(

1− ζa

1− ζ

)
, 1 < a < q/2,

as before and deduce the desired result analogously.

It should be evident that the above proof implies the following.

Corollary 15. Let q > 1 and r be positive integers with r < q. Then
the numbers

qγp(r, q)− γp

are transcendental.

4. Proof of Theorem 2. As in the proof of Theorem 1, our proof of
Theorem 2 will make use of the fact that

1− ζa

1− ζ
, 1 < a < q/2,

is a system of fundamental units for the field Q(ζ).
First suppose that q = p. By the first part of Lemma 11, whenever p - r,

we have

ψp(r/q) = − log q − γp +
q−1∑
a=1

ζ−ar log(1− ζa),

where ζ is a primitive qth root of unity. Now,

q =
q−1∏
a=1

(1− ζa).
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Therefore,

log q =
q−1∑
a=1

log
(

1− ζa

1− ζ

)
+ (q − 1) log(1− ζ).

Hence,

ψp(r/q) + γp = −q log(1− ζ)−
q−1∑
a=1

(1− ζ−ar) log
(

1− ζa

1− ζ

)
.

As in the proof of Theorem 1, we can rewrite the sum by pairing up a with
−a and get

(7) ψp(r/q) + γp = −q log(1− ζ)−
∑

1<a<q/2

(2− ζ−ar − ζar) log
(

1− ζa

1− ζ

)
.

By Lemma 14, the right hand side is non-zero. Again, as in the proof of
Theorem 1, we rewrite the right hand side to get

ψp(r/q) + γp = − q

φ(pM )
log[1 + ((1− ζ)φ(pM ) − 1)]

−
∑

1<a<q/2

2− ζar − ζ−ar

φ(pM )
log
[
1 +

(
1− ζa

1− ζ

)φ(pM )

− 1
]
.

Proceeding as before, we deduce from Lemma 14 and Corollary 13 that
ψp(r/q) + γp is transcendental. This completes the proof of the first part of
the theorem. The second part is proved in a completely analogous fashion
and so we suppress the details.

5. Proof of Theorem 6. Let q∗ = q if p = q and q∗ = pq if p 6= q. By
Proposition 5, Lp(1, f) = 0 if and only if L(1, f̃) = 0. Now, f̃ is a periodic,
algebraic-valued function with period q∗. By its very definition, f̃(n) = 0
whenever 1 < gcd(n, q) < q. Hence by Proposition 3, L(1, f̃) 6= 0. Thus,
Lp(1, f) 6= 0. On the other hand, by Washington [12], we have

Lp(1, f) =
q−1∑
r=1

ar log(1− ζr) + a0 log q,

with ai ∈ Qp(ζ). Now,

log q =
q−1∑
r=1

log(1− ζr)

so that the previous expression can be rewritten simply as an algebraic linear
combination of log[(1− ζr)/(1− ζ)] with 1 < r ≤ q/2 and log(1− ζ). Since
q is prime, these numbers are multiplicatively independent by Lemma 14.
Hence, by Corollary 13, we deduce the transcendence of Lp(1, f).
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6. Proof of Theorem 7 and Corollary 8. By Proposition 5, we
know that Lp(1, f) = 0 if and only if L(1, f̃) = 0 and further, if p - q, that
Lp(1, f) = 0 if and only if L(1, f) = 0. The conditions of Proposition 4 imply
that L(1, f̃) 6= 0. Thus, Lp(1, f) 6= 0.

As seen earlier, Lp(1, f) is an algebraic linear combination of log(1−ζr),
1 ≤ r ≤ q − 1. Hence, by Corollary 13, we deduce the transcendence of
Lp(1, f) and this completes the proof.

7. Concluding remarks. Since the function H1 is the logarithm of
Morita’s p-adic Γ -function, one can specialize our results above to write
that if q is prime and p ≡ 1 (mod q), then for 1 ≤ r < q,(

1− 1
p

)−1Γ ′p
Γp

(
r

q

)
+ γp

is transcendental. This statement has the aesthetic virtue of resembling our
earlier result on the classical digamma function. However, in the p-adic do-
main, as is often the case, there are various ways of extending the classical
situation.
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