Centre de Recherches Mathématiques CRM Proceedings and Lecture Notes Volume ??, 2004

On the *p*-Adic Series $\sum_{n=1}^{\infty} n^k \cdot n!$

M. Ram Murty and Sarah Sumner

1. Introduction

Let \mathbb{Q}_p be the field of *p*-adic numbers. It is well known that the sum

$$\sum_{n=1}^{\infty} a_n,$$

with $a_n \in \mathbb{Q}_p$ converges if and only if $|a_n|_p \to 0$ as $n \to \infty$ (see for example, [6, p. 87]). Since $|n!|_p \to 0$, we see that $\sum_{n=1}^{\infty} n!$ converges in \mathbb{Q}_p , as well as the related sums $\sum_{n=1}^{\infty} n^k \cdot n!$ for k a non-negative integer. Our goal in this paper is to investigate these *p*-adic sums.

Our first question is whether

$$\alpha = \sum_{n=1}^{\infty} n!$$

is a p-adicirrational or not, a question first asked by Schikhof [9, p. 17]. We conjecture that it is. Observe however that

$$\sum_{n=1}^{\infty} n \cdot n! = -1$$

A simple proof by induction shows that $1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + m \cdot m! = \sum_{n=0}^{m} n \cdot n! = \sum_{n=0}^{m} n \cdot n!$ (m+1)!-1. Since $\lim_{m\to\infty} |(m+1)!|_p = 0$, the desired result follows. On the other hand, we show below that

$$\alpha_k = \sum_{n=1}^{\infty} n^k \cdot n! = v_k - u_k \alpha,$$

where $v_k, u_k \in \mathbb{Z}$. We will prove using ideas from combinatorics and number theory that $u_k \neq 0$ for $k \equiv 0$ or 2 (mod 3). Thus, the irrationality of α_k hinges on the irrationality of α in these cases. This strengthens the observation made by Dragovich [5] that if α is irrational, then so is α_k . We suspect $u_k \neq 0$ for every $k \geq 2$. In this paper, we will assume that α is irrational and study the sequences u_k and v_k .

©2004 American Mathematical Society

²⁰⁰⁰ Mathematics Subject Classification. Primary:; Secondary:; This is the final form of the paper.

The sequence of integers u_k defined below is of independent combinatorial interest. We hope to address the question of the non-vanishing of u_k for $k \ge 2$ in a future paper. Below, we establish some relationships with Stirling numbers of the second kind that allows us to prove non-vanishing results in some cases. It should be clear from the context that in the summations being considered, which ones are *p*-adic sums and which are summations in the field of real numbers.

2. Preliminaries

We must first recall some notation and elementary lemmas from combinatorics. The reader who wishes a more detailed review of this material is advised to consult Comtet [3].

The rising factorial is

$$\langle x \rangle_n = x(x+1)(x+2)\cdots(x+n-1).$$

The Stirling number of the first kind, denoted by s(k, j), is defined by the rule that $(-1)^{k+j}s(k, j)$ is the number of permutations of $\{1, \ldots, k\}$ with j cycles. The Stirling number of the second kind, denoted by S(k, j), is the number of partitions of $\{1, \ldots, k\}$ into j non-empty parts. Stirling numbers of the first kind are related to the rising factorial by the following relation [3, p. 213].

Lemma 1.

$$\langle x \rangle_j = \sum_{j=1}^k |s(k,j)| x^j.$$

We will also have need for a very useful inversion lemma [3, p. 144].

LEMMA 2. Let $\{f_k\}$ and $\{g_k\}$ be sequences of real numbers. Then,

$$f_k = \sum_{j=1}^k S(k,j)g_j \Leftrightarrow g_k = \sum_{j=1}^k s(k,j)f_j.$$

We recall the following basic fact which will be used below:

$$\left(\sum_{n=0}^{\infty} \frac{a_n T^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{b_n T^n}{n!}\right) = \sum_{n=0}^{\infty} \frac{c_n T^n}{n!}$$

where

$$c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}.$$

Bell numbers will appear below, and will be denoted B_k . Since B_{k+1} is just the total number of all partitions of the set $\{1, 2, \ldots, k+1\}$ [3, p. 210], we deduce:

Lemma 3.

$$B_{k+1} = \sum_{j=1}^{k+1} S(k+1, j).$$

3. A generating function for u_k

We must first demonstrate that $\sum_{n=1}^{\infty} n^k \cdot n! = v_k - u_k \alpha$, where $\alpha = \sum_{n=1}^{\infty} n!$ and v_k and u_k are integers. Notice that $\sum_{n=1}^{\infty} ((n+k)! - n!)$ is a telescoping sum that equals $-\sum_{n=1}^{k} n!$. For k = 2 this becomes,

$$\sum_{n=1}^{\infty} \left((n+2)! - n! \right) = \sum_{n=1}^{\infty} n! \left((n+2)(n+1) - 1 \right),$$
$$\sum_{n=1}^{\infty} n^2 \cdot n! = -\sum_{n=1}^{\infty} n!.$$

An inductive argument now shows that $\sum_{n=1}^{\infty} n^k \cdot n!$ can be written as $v_k - u_k \alpha$ where $v_k, u_k \in \mathbb{Z}$.

Observe now that for the same sum,

$$\sum_{n=1}^{\infty} ((n+k)! - n!) = \sum_{n=1}^{\infty} (n-1)! \{ (n+k)(n+k-1)\cdots n - n \}$$
$$= \sum_{n=1}^{\infty} (n-1)! \langle n \rangle_{k+1} - \sum_{n=1}^{\infty} n!.$$

Hence applying Lemma 1,

$$-\sum_{n=1}^{k} n! + \alpha = \sum_{n=1}^{\infty} (n-1)! \langle n \rangle_{k+1}$$
$$= \sum_{n=1}^{\infty} (n-1)! \sum_{j=1}^{k+1} |s(k+1,j)| n^{j}$$
$$= \sum_{j=1}^{k+1} |s(k+1,j)| \sum_{n=1}^{\infty} n^{j-1} n!.$$

Letting $\sum_{n=1}^{\infty} n^{j-1} n! = v_{j-1} - u_{j-1} \alpha$ gives

$$-\sum_{n=1}^{k} n! + \alpha = \sum_{j=1}^{k+1} |s(k+1,j)| \{v_{j-1} - u_{j-1}\alpha\}.$$

If we now suppose that α is irrational, then this yields

(3.1)
$$\sum_{\substack{j=1\\k+1}}^{k+1} |s(k+1,j)|v_{j-1}| = -\sum_{n=1}^{k} n!,$$

(3.2)
$$\sum_{j=1}^{k+1} |s(k+1,j)| u_{j-1} = -1.$$

Removing absolute values from equation (3.2) we get

(3.3)
$$\sum_{j=1}^{k+1} (-1)^j s(k+1,j) u_{j-1} = (-1)^k.$$

Applying Lemma 2 to equation (3.3) yields one generating function. Let $f_{k+1} = (-1)^{k+1}u_k$ and $g_j = (-1)^{j-1}$ to get

$$f_{k+1} = (-1)^{k+1} u_k = \sum_{j=1}^{k+1} S(k+1,j)g_j$$
$$= \sum_{j=1}^{k+1} (-1)^{j-1} S(k+1,j).$$

Thus,

Lemma 4.

$$(-1)^k u_k = \sum_{j=1}^{k+1} (-1)^j S(k+1,j).$$

This is a simplification of the method of solving k + 1 linear equations to determine each u_k outlined by Dragovich [5, p. 101]. Using this relation, the first few terms in the sequence $\{u_k\}$ can be easily calculated:

$$\{0, 1, -1, -2, 9, -9, -50, 267, -413, -2180, 17731, -50533, -110176, 1966797, -9938669, 8638718, 278475061, -2540956509, 9816860358...\}$$

This is the negative of sequence A014182 of Sloane $[{\bf 10}].$ Lemma 4 implies the crucial result

Lemma 5.

$$u_k \equiv \sum_{j=1}^{k+1} S(k+1,j) \pmod{2}.$$

Other generating functions for the u_k also exist. Now we caution the reader that below, the series being considered are not *p*-adic series but usual series involving real numbers.

Lemma 6.

$$(-1)^k u_k = e \sum_{n=0}^{\infty} \frac{n^{k+1}}{n!} (-1)^n.$$

PROOF. Recall the known identity [3, p. 204]

$$S(k+1,j) = \frac{1}{j!} \sum_{r=0}^{j} (-1)^r \binom{j}{r} (j-r)^{k+1}.$$

Now,

$$(-1)^{k} u_{k} = \sum_{j \ge 1} (-1)^{j} S(k+1,j)$$
$$= \sum_{j \ge 1} \frac{(-1)^{j}}{j!} \sum_{0 \le r \le j} (-1)^{r} {j \choose r} (j-r)^{k+1}$$
$$= \sum_{r \ge 0} \frac{(-1)^{r}}{r!} \sum_{j \ge r} \frac{(-1)^{j}}{j!} \frac{j!}{(j-r)!} (j-r)^{k+1}$$

4

ON THE *p*-ADIC SERIES $\sum_{n=1}^{\infty} n^k \cdot n!$

$$= \sum_{r \ge 0} \frac{1}{r!} \sum_{j \ge r} \frac{(-1)^{j-r}}{(j-r)!} (j-r)^{k+1}$$
$$= \sum_{r \ge 0} \frac{1}{r!} \sum_{n=0}^{\infty} \frac{n^{k+1}}{n!} (-1)^n$$
$$(-1)^k u_k = e \sum_{n=0}^{\infty} \frac{n^{k+1}}{n!} (-1)^n. \quad \Box$$

Lemma 7.

$$\sum_{k=0}^{\infty} \frac{(-1)^k u_k T^k}{k!} = -e^{-e^T + T + 1}$$

Proof.

$$\begin{split} \sum_{k=0}^{\infty} \frac{(-1)^k u_k T^k}{k!} &= e \sum_{k=0}^{\infty} \frac{T^k}{k!} \sum_{n=0}^{\infty} \frac{(-1)^n n^{k+1}}{n!} \\ &= e \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{T^k n^k}{k!} \frac{(-1)^n n}{n!} \\ &= e \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} n e^{Tn} \\ &= -e \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n-1)!} e^{T(n-1)} e^T \\ &= -e \cdot e^{-e^T} \cdot e^T \\ \sum_{k=0}^{\infty} \frac{(-1)^k u_k T^k}{k!} &= -e^{-e^T + T + 1}. \end{split}$$

Since $e^{e^T-1} = \sum B_k T^k / k!$ [3, p. 211], applying the remark made earlier about the multiplication of exponential generating functions and Lemma 7, we see that

$$\left(\sum_{k=0}^{\infty} \frac{B_k T^k}{k!}\right) \left(\sum_{k=0}^{\infty} \frac{(-1)^k u_k T^k}{k!}\right) = -\sum_{k=0}^{\infty} \frac{T^k}{k!}$$

which proves

Lemma 8.

$$\sum_{k=0}^{n} \binom{n}{k} B_k (-1)^{n-k} u_{n-k} = -1.$$

4. Congruences for $\{u_k\}$

There are several interesting congruence relations for $\{u_k\}$. LEMMA 9. For every prime $p, u_{p-1} \equiv -2 \pmod{p}$. PROOF. Recall that S(p,1) = S(p,p) = 1 and that for $2 \le k \le p-1$, $S(p,k) \equiv 0 \pmod{p}$, [3, p. 219]. Observe,

$$(-1)^{p-1}u_{p-1} = \sum_{j=1}^{p} (-1)^{j} S(p, j),$$

$$(-1)^{p-1}u_{p-1} \equiv (-1)S(p, 1) + (-1)S(p, p) \pmod{p},$$

$$u_{p-1} \equiv -2 \pmod{p}. \quad \Box$$

LEMMA 10. For every prime $p, u_p \equiv -1 \pmod{p}$.

PROOF. Substitute the recurrence $S(k+1,j)=S(k,j-1)+jS(k,j),\,[{\bf 3},\,{\rm p.\ 208}]$ into

$$(-1)^{p}u_{p} = \sum_{j=1}^{p+1} (-1)^{j}S(p+1,j),$$

$$-u_{p} = \sum_{j=1}^{p+1} (-1)^{j}S(p,j-1) + \sum_{j=1}^{p+1} (-1)^{j}jS(p,j),$$

$$-u_{p} \equiv -u_{p-1} + (-1)S(p,1) \pmod{p},$$

$$u_{p} \equiv u_{p-1} + 1 \pmod{p},$$

$$u_{p} \equiv -2 + 1 \pmod{p},$$

$$u_{p} \equiv -1 \pmod{p}. \square$$

Using the fact that for every prime p,

$$\binom{p^r}{k} \equiv 0 \pmod{p}$$

whenever $1 \le k \le p^r - 1$ along with Lemma 8, we conclude

LEMMA 11. Let p be a prime number. For every $r \ge 1$,

$$B_{p^r} - 1 \equiv (-1)^{p^r} u_{p^r} \pmod{p}.$$

5. A general theorem

THEOREM 1. If $k \equiv 0$ or 2 (mod 3) then $u_k \neq 0$, and hence in these cases α_k will be irrational provided α is.

Since we have already shown in Lemma 5 that

$$u_k \equiv \sum_{j=1}^{k+1} S(k+1,j) \equiv B_{k+1} \pmod{2},$$

Theorem 1 will follow from the following lemma:

LEMMA 12. If $k \equiv 2 \pmod{3}$ then B_k is even, otherwise B_k is odd.

PROOF. We will proceed by induction. $B_0 = 1$, $B_1 = 1$ and $B_2 = 2$, so the base cases are clear. Suppose the lemma is true for all $j \leq k$. Recall the recursion for B_{k+1} ,

$$B_{k+1} = \sum_{j=0}^{k} \binom{k}{j} B_j.$$

By the induction hypothesis, if $j \equiv 2 \pmod{3}$ then B_j is even, and otherwise B_j is odd. Hence the recursive formula becomes

$$\sum_{\substack{j \neq 2 \pmod{3}}} \binom{k}{j} \equiv \sum_{\substack{j \equiv 0 \pmod{3}}} \binom{k}{j} + \sum_{\substack{j \equiv 1 \pmod{3}}} \binom{k}{j} \pmod{2}.$$

Let $\zeta=e^{2\pi i/3}$ be a cube root of unity. From the binomial theorem, we see

$$\sum_{j=0}^{k} \binom{k}{j} x^{j} = (1+x)^{k},$$
$$\sum_{j=0}^{k} \binom{k}{j} \zeta^{j} x^{j} = (1+\zeta x)^{k},$$
$$\sum_{j=0}^{k} \binom{k}{j} \zeta^{2j} x^{j} = (1+\zeta^{2}x)^{k}.$$

Adding these together we get

$$\sum_{j=0}^{k} \binom{k}{j} x^{j} (1+\zeta^{j}+\zeta^{2j}) = (1+x)^{k} + (1+\zeta x)^{k} + (1+\zeta^{2}x)^{k}.$$

Let x = 1.

$$\sum_{j=0}^{k} \binom{k}{j} (1+\zeta^{j}+\zeta^{2j}) = 2^{k} + (1+\zeta)^{k} + (1+\zeta^{2})^{k}.$$

Recall

$$1 + \zeta^{j} + \zeta^{2j} = \begin{cases} 3 & \text{if } j \equiv 0 \pmod{3} \\ 0 & \text{otherwise.} \end{cases}$$

 So

$$3 \sum_{j \equiv 0 \pmod{3}} \binom{k}{j} = 2^k + (1+\zeta)^k + (1+\zeta^2)^k$$
$$= 2^k + (1+\zeta)^k + (1+\zeta^{-1})^k$$
$$= 2^k + 2\Re(1+\zeta)^k$$
$$= 2^k - 2\Re(\zeta^{2k}).$$

Let us note that

(5.1)
$$\zeta^{2k} = \begin{cases} 1 & \text{if } k \equiv 0 \pmod{3} \\ \zeta & \text{if } k \equiv 2 \pmod{3} \\ \zeta^2 & \text{if } k \equiv 1 \pmod{3}. \end{cases}$$

Now for the other sum. Consider

$$\sum_{j=0}^{k} \binom{k}{j} x^{j} = (1+x)^{k},$$
$$\sum_{j=0}^{k} \binom{k}{j} \zeta^{j-1} x^{j} = \zeta^{-1} (1+\zeta x)^{k},$$
$$\sum_{j=0}^{k} \binom{k}{j} \zeta^{2j-2} x^{j} = \zeta^{-2} (1+\zeta^{2}x)^{k}.$$

Adding these together gives

$$\sum_{j=0}^{k} \binom{k}{j} x^{j} (1+\zeta^{j-1}+\zeta^{2j-2}) = (1+x)^{k} + \zeta^{-1} (1+\zeta x)^{k} + \zeta^{-2} (1+\zeta^{2}x)^{k}.$$

Let x = 1

$$\sum_{j=0}^{k} \binom{k}{j} (1+\zeta^{j-1}+\zeta^{2j-2}) = 2^{k} + \zeta^{-1} (1+\zeta)^{k} + \zeta^{-2} (1+\zeta^{2})^{k}.$$

Now

$$1 + \zeta^{j-1} + \zeta^{2j-2} = \begin{cases} 3 & \text{if } j-1 \equiv 0 \pmod{3} \\ 0 & \text{otherwise.} \end{cases}$$

Hence,

$$3 \sum_{j \equiv 1 \pmod{3}} {\binom{k}{j}} = 2^k + \zeta^{-1} (1+\zeta)^k + \zeta (1+\zeta^{-1})^k$$
$$= 2^k + 2\Re\zeta (1+\zeta^{-1})^k$$
$$= 2^k + 2\Re\zeta (1+\zeta^2)^k$$
$$= 2^k + 2\Re\zeta (-\zeta)^k$$
$$= 2^k + (-1)^k 2\Re(\zeta^{k+1}).$$

Now

(5.2)
$$\zeta^{k+1} = \begin{cases} 1 & \text{if } k+1 \equiv 0 \pmod{3} \\ \zeta & \text{if } k+1 \equiv 1 \pmod{3} \\ \zeta^2 & \text{if } k+1 \equiv 2 \pmod{3}. \end{cases}$$

.

Combining the information in equations (5.1) and (5.2), we see that if $k \equiv 1 \pmod{3}$ then $B_{k+1} \equiv 0 \pmod{2}$, and if $k \not\equiv 1 \pmod{3}$ then $B_{k+1} \equiv 1 \pmod{2}$ proving Theorem 1.

6. Concluding remarks

The non-vanishing of u_k is a conjecture of Wilf (see [7]). In [11], it is proved that the number of $k \leq x$ with $u_k = 0$ is $O(x^{2/3})$.

Other questions deserving attention linked to the study of $\{u_k\}$ concern the existence and properties of *p*-adic interpolation of functions of the form

$$f(s) = \sum n^s \cdot n!.$$

If the sum is taken over all odd numbers n, then it can be shown that f(s) has a 2-adic interpolation, which raises the question of whether $\{u_k\}$ and $\{v_k\}$ have 2-adic limits or not. Similar questions can be raised about p-adic interpolation and limits for odd primes, which seem to be more involved cases.

References

- 1. Z. I. Borevich and I. R. Shafarevich, Number theory, Academic Press, Toronto, 1966.
- E. B. Burger and T. Struppeck, Does ∑_{n=0}[∞] 1/n! really converge? Infinite aeries and p-adic analysis, Amer. Math. Monthly 103 (1996), no. 9, 565–577.
- 3. L. Comtet, Advanced combinatorics, D. Reidel Publishing Company, 1974.
- B. G. Dragovich, Power series everywhere convergent on R and all Q_p, J. Math. Phys. 34 (1993), no. 3, 95–105.
- _____, On some p-adic series with factorials, p-adic Functional Analysis, (W. H. Schikhof, C. Perez–Garcia and J. Kąkol, eds.), Lecture Notes in Pure and App. Math., vol. 192, Marcel Dekker, Inc., New York, 1997, pp. 95-105.
- 6. F. Q. Gouvêa, p-adic numbers: An introduction, Springer-Verlag, New York, 1993.
- M. Klazar, Counting even and odd partitions, Amer. Math. Monthly 110 (2003), no. 6, 527–532.
- W. H. Schikhof, C. Perez–Garcia and J. Kąkol (eds.), *p-adic functional analysis*, Lecture Notes in Pure and Appl. Math., vol. 192, Marcel Dekker, Inc., New York, 1997.
- 9. W. Schikhof, Ultrametric calculus: an introduction to p-adic analysis, Cambridge University Press, Cambridge, 1984.
- N. J. A. Sloane, The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc. 50 (2003), no. 8, 912-915; http://www.research.att.com/~njas/sequences.
- 11. Y. Yang, On a multiplicative partition function, Electron. J. Combin. 8 (2001), no. 1.
- L. C. Washington, Introduction to cyclotomic fields, Grad. Texts in Math., vol. 83, Springer-Verlag, New York, 1983.

Department of Mathematics and Statistics, Queen's University, Kingston, ON K7L 3N6, Canada.

E-mail address: murty@mast.queensu.ca

GENERAL DYNAMICS CANADA LTD., OTTAWA, ON K2H 5B7, CANADA. *E-mail address:* sarah.sumner@gdcanada.com