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On the p-Adic Series Y 2 n* - n!

M. Ram Murty and Sarah Sumner

1. Introduction

Let Q, be the field of p-adic numbers. It is well known that the sum

[e%S)
E Qn,
n=1

with a, € Q, converges if and only if |an|, — 0 as n — oo (see for example,
6, p. 87]). Since [nl|, — 0, we see that >0, n! converges in Q,, as well as the
related sums > 2, n* . n! for k a non-negative integer. Our goal in this paper is to
investigate these p-adic sums.

Our first question is whether

oo
o= E n!
n=1

is a p-adicirrational or not, a question first asked by Schikhof [9, p. 17]. We con-
jecture that it is. Observe however that

o0
Zn-n! = 1.
n=1

A simple proof by induction shows that 1-114-2-2!4+3-3!4- - -+m-m! = 3" n-nl =
(m+1)!—1. Since limy, o [(m + 1), = 0, the desired result follows. On the other
hand, we show below that

(oo}

o = an -n! = v, — uga,

n=1
where vg, up € Z. We will prove using ideas from combinatorics and number theory
that up # 0 for k¥ = 0 or 2 (mod 3). Thus, the irrationality of aj hinges on
the irrationality of « in these cases. This strengthens the observation made by
Dragovich [5] that if « is irrational, then so is aj. We suspect u, # 0 for every
k > 2. In this paper, we will assume that « is irrational and study the sequences
ug and vy.
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The sequence of integers uy defined below is of independent combinatorial in-
terest. We hope to address the question of the non-vanishing of u; for £ > 2 in a
future paper. Below, we establish some relationships with Stirling numbers of the
second kind that allows us to prove non-vanishing results in some cases. It should
be clear from the context that in the summations being considered, which ones are
p-adic sums and which are summations in the field of real numbers.

2. Preliminaries

We must first recall some notation and elementary lemmas from combinatorics.
The reader who wishes a more detailed review of this material is advised to consult
Comtet [3].

The rising factorial is

(@yp=z(z+1)(x+2)---(z+n—1).

The Stirling number of the first kind, denoted by s(k,j), is defined by the rule
that (—1)**7s(k, ) is the number of permutations of {1,...,k} with j cycles. The
Stirling number of the second kind, denoted by S(k, j), is the number of partitions
of {1,...,k} into j non-empty parts. Stirling numbers of the first kind are related
to the rising factorial by the following relation [3, p. 213].

LEMMA 1.
(@) = Is(k, j)|2’.
j=1
We will also have need for a very useful inversion lemma [3, p. 144].

LEMMA 2. Let {fx} and {gr} be sequences of real numbers. Then,

k

k
fe=_ S8k §)g; < gp =Y sk, 1) f;-

j=1 j=1
We recall the following basic fact which will be used below:

n=0 n=0 n=0

where
Cp = Z <Z) akbn,k.
k=0
Bell numbers will appear below, and will be denoted Bj. Since By is just

the total number of all partitions of the set {1,2,...,k+ 1} [3, p. 210], we deduce:

LEMMA 3.
k+1

Brri=Y S(k+1,5).
i=1



ON THE p-ADIC SERIES Y22 n” . n! 3

3. A generating function for uy

We must first demonstrate that > oo, n* - nl = v, — upa, where a =Y 7 | nl
and vy, and uy, are integers. Notice that y ((n + k) — n!) is a telescoping sum
that equals — 2221 n!. For k = 2 this becomes,

Z((n—i—?'—n' Zn' (n+2)(n+1)—1),
n=1 n=1

Zn2 -nl = —Zn!.
n=1 n=1

An inductive argument now shows that Zzozl n* . n! can be written as v, — upQ
where vy, up € Z.
Observe now that for the same sum,

Z((n—i—k)!—n!) :Z(n—1)!{(n+kz)(n+k‘—l)-~-n—n}

M

oo
(n—1DUn)r41 — Z

1

3
Il

Hence applying Lemma 1,

_Zn|+a:

(n = DXn)r1

Mg 103

k-+1 _

=Y (=1 sk +1,5)n?
n=1 j=1
k+1 [e%)

= Is(k+1,5)] > n/"'nl.
j=1 n=1

Letting Y 02, n/"'nl = v;_; — u;_1a gives

k+1

_Zn'+0‘_2| (k+1,7){vj—1 — uj1a}.

If we now suppose that « is irrational, then this yields

k+1

(3.1) Z| s(k+1,5)|vj_1 = — Zn'
k+1

(3.2) D stk + 1, ) w1 = —1.
=1

Removing absolute values from equation (3.2) we get

k+1

(3.3) D (=1 s(k+ 1, ) uj_y = (—1)F.

Jj=1



4 M. RAM MURTY AND SARAH SUMNER

Applying Lemma 2 to equation (3.3) yields one generating function. Let fr1q1 =
(—=1)**lyy and g; = (—1)77! to get

k+1
frer = (1) u ZS (k+1.4)g
k+1
Z Yk +1,9).
Thus,
LEMMA 4.

k+1

(—D)Fup = > (=1)S(k + 1,5).

J=1

This is a simplification of the method of solving k£ 4+ 1 linear equations to
determine each wy outlined by Dragovich [5, p. 101]. Using this relation, the first
few terms in the sequence {ux} can be easily calculated:

{0,1,-1,-2,9, -9, 50,267, —413, —2180, 17731, —50533, —110176,
19667977 —9938669, 8638718, 278475061, —2540956509, 9816860358 . .. }

This is the negative of sequence A014182 of Sloane [10]. Lemma 4 implies the
crucial result

LEMMA 5.
k41
up=»_ S(k+1,5) (mod 2).
j=1
Other generating functions for the uy also exist. Now we caution the reader that
below, the series being considered are not p-adic series but usual series involving
real numbers.

LEMMA 6.

i e nk+1
—Drup =e) —— (=1
n=0 ’

PRrROOF. Recall the known identity [3, p. 204]

Sk+1,5) = 'Z ()j—r)}”l.
Now,

(—Dfur =Y (=1)'S(k + 1,)

Jj=1
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= % 3 (_1)’): (j — r)ht!

= U

1 o nk+1
=2 g

r>0 n=0
o0 k+1
k= _ n \n
(-1) ukfengo (=" O

LEMMA 7.

i (‘DkUka _ _e—eT+T+1

k!

k=0

PRrOOF.

k=0 k=0 = n=0
2 & Trnk (=1)"n
=¢ Z Z A !
n=0 k=0
oo 71 n
—e ( ') TLBTn
— nl
_1)n
—e ( ) : 'eT(nfl)eT
n=1 (n - )
=—e-e® L
i G VT A A

Since e¢’ ~! = S B T*/k! [3, p. 211], applying the remark made earlier about
the multiplication of exponential generating functions and Lemma 7, we see that

=, B, Tk > (—1)ku, Tk >, Tk
E5) (5 )55

k=0 k=0 k=0

which proves

LEMMA 8.
2 (e

k=0

4. Congruences for {ug}

There are several interesting congruence relations for {uy}.

LEMMA 9. For every prime p, up—1 = —2 (mod p).
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PROOF. Recall that S(p,1) = S(p,p) = 1 and that for 2 < k < p — 1,
S(p,k) = 0 (mod p), [3, p. 219]. Observe,
P

(_1)1)71“17*1 = Z(_l)js(pa .7)3

j=1
(=" tup1 = (-1)S(p,1) + (=1)S(p,p) (mod p),
Up—1 =—2 (modp). O
LEMMA 10. For every prime p, u, = —1 (mod p).

PROOF. Substitute the recurrence S(k+1,j) = S(k,j—1)+jS(k,j), [3, p. 208]
into

p+1
(1), = 3(-1VS( + 1.9),
j)"!_‘l ] p+1 4
—tp = (1S — 1) Y (15 (p.3),

—tp = —up—1 + (=1)S(p,1) (mod p),
Up =up—1+1 (mod p),
up=-2+1 (mod p),
up, =—1 (mod p). O

Using the fact that for every prime p,

(i) =0 (mod p)

whenever 1 < k < p" — 1 along with Lemma 8, we conclude
LEMMA 11. Let p be a prime number. For every r > 1,
By —1= (—l)pTupr (mod p).
5. A general theorem

THEOREM 1. If k =0 or 2 (mod 3) then ug # 0, and hence in these cases ay,
will be irrational provided « is.

Since we have already shown in Lemma 5 that
k+1
up = ZS(k +1,j) = Bi+1  (mod 2),
j=1
Theorem 1 will follow from the following lemma:
LEMMA 12. If k =2 (mod 3) then By is even, otherwise By, is odd.

Proor. We will proceed by induction. By = 1, By = 1 and By = 2, so the
base cases are clear. Suppose the lemma is true for all j < k. Recall the recursion

for Bk_;,_l,
"k
Bep1 =) ; Bj.

Jj=0
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By the induction hypothesis, if j = 2 (mod 3) then B; is even, and otherwise B;
is odd. Hence the recursive formula becomes

k k k

Z ( ) = Z ( ) + Z ( ) (mod 2).
j#2 (mod 3) J j=0 (mod 3) J j=1 (mod 3) J

Let ¢ = €2™/3 be a cube root of unity. From the binomial theorem, we see

zk: (lj)xﬂ =(1+a)k,

7=0

> ({)ew = vt
i()g%f (1+ %)k

j=
Adding these together we get

k

2) (l;)xj(l F O+ ) = 1+ 2)F + (1 +Ca)* + (1 + o).
pu
Let o = 1.

Zki( ) 1+ +¢¥) =2+ 1+ 0"+ 1+ ¢

p
Recall

R

So

300) (k> =2F 4+ (14O + (1 + )"

J=0 (mod 3) J
=2+ 1+ QO+ (1 +¢H
=2 L 2R(1 + Ok
=2k —2R(¢).

Let us note that

1 ifk=0 (mod 3)
(5.1) ¢**={¢ ifk=2 (mod3)
¢? ifk=1 (mod 3).
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Now for the other sum. Consider

zk: <];>x] = (1+2)k,

Jj=0

k
> ('j) el = ML+ Ca),
j=0

k
> ( '><2”zj = 21+ o)

Jj=0

S 3

Adding these together gives
k

> (j)f”(l +ITH T = () + U+ )+ P+ Gt
3=0
Let x =1
ko rk , ,
> (9) A+ + ) =2+ A+ O + TP+ )
7=0
Now
- - 3 ifj—1=0 (mod 3)
14+ j—1 4 2j—-2 _ )
¢ ¢ 0 otherwise.
Hence,
k
3), ( ‘)z A+ OP T
j=1 (mod 3) J
=2F L 2RC(1+ ¢
=28 1 2RC(1 + ¢H)F
= 2" 4+ 2R¢(=0)*
Now
1 ifk+1=0 (mod 3)
(5.2) =3¢ ifk+1=1 (mod 3)
¢ ifk+1=2 (mod3).
Combining the information in equations (5.1) and (5.2), we see that if k = 1

(mod 3) then Bpi1 = 0 (mod 2), and if k¥ £ 1 (mod 3) then Biy1 = 1 (mod 2)

proving Theorem 1.

6. Concluding remarks

O

The non-vanishing of uy, is a conjecture of Wilf (see [7]). In [11], it is proved

that the number of k <  with uy, = 0 is O(2/3).

Other questions deserving attention linked to the study of {wuj} concern the

existence and properties of p-adic interpolation of functions of the form

f(s) = Zns - nl.
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If the sum is taken over all odd numbers n, then it can be shown that f(s) has
a 2-adic interpolation, which raises the question of whether {ux} and {vx} have
2-adic limits or not. Similar questions can be raised about p-adic interpolation and
limits for odd primes, which seem to be more involved cases.

[\
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