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On the p-Adic Series
∑∞

n=1 nk · n!

M. Ram Murty and Sarah Sumner

1. Introduction

Let Qp be the field of p-adic numbers. It is well known that the sum
∞∑

n=1

an,

with an ∈ Qp converges if and only if |an|p → 0 as n → ∞ (see for example,
[6, p. 87]). Since |n!|p → 0, we see that

∑∞
n=1 n! converges in Qp, as well as the

related sums
∑∞

n=1 nk ·n! for k a non-negative integer. Our goal in this paper is to
investigate these p-adic sums.

Our first question is whether

α =
∞∑

n=1

n!

is a p-adicirrational or not, a question first asked by Schikhof [9, p. 17]. We con-
jecture that it is. Observe however that

∞∑
n=1

n · n! = −1.

A simple proof by induction shows that 1·1!+2·2!+3·3!+· · ·+m·m! =
∑m

n=0 n·n! =
(m+1)!−1. Since limm→∞ |(m + 1)!|p = 0, the desired result follows. On the other
hand, we show below that

αk =
∞∑

n=1

nk · n! = vk − ukα,

where vk, uk ∈ Z. We will prove using ideas from combinatorics and number theory
that uk 6= 0 for k ≡ 0 or 2 (mod 3). Thus, the irrationality of αk hinges on
the irrationality of α in these cases. This strengthens the observation made by
Dragovich [5] that if α is irrational, then so is αk. We suspect uk 6= 0 for every
k ≥ 2. In this paper, we will assume that α is irrational and study the sequences
uk and vk.
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The sequence of integers uk defined below is of independent combinatorial in-
terest. We hope to address the question of the non-vanishing of uk for k ≥ 2 in a
future paper. Below, we establish some relationships with Stirling numbers of the
second kind that allows us to prove non-vanishing results in some cases. It should
be clear from the context that in the summations being considered, which ones are
p-adic sums and which are summations in the field of real numbers.

2. Preliminaries

We must first recall some notation and elementary lemmas from combinatorics.
The reader who wishes a more detailed review of this material is advised to consult
Comtet [3].

The rising factorial is

〈x〉n = x(x + 1)(x + 2) · · · (x + n− 1).

The Stirling number of the first kind, denoted by s(k, j), is defined by the rule
that (−1)k+js(k, j) is the number of permutations of {1, . . . , k} with j cycles. The
Stirling number of the second kind, denoted by S(k, j), is the number of partitions
of {1, . . . , k} into j non-empty parts. Stirling numbers of the first kind are related
to the rising factorial by the following relation [3, p. 213].

Lemma 1.

〈x〉j =
k∑

j=1

|s(k, j)|xj .

We will also have need for a very useful inversion lemma [3, p. 144].

Lemma 2. Let {fk} and {gk} be sequences of real numbers. Then,

fk =
k∑

j=1

S(k, j)gj ⇔ gk =
k∑

j=1

s(k, j)fj .

We recall the following basic fact which will be used below:( ∞∑
n=0

anTn

n!

)( ∞∑
n=0

bnTn

n!

)
=

∞∑
n=0

cnTn

n!

where

cn =
n∑

k=0

(
n

k

)
akbn−k.

Bell numbers will appear below, and will be denoted Bk. Since Bk+1 is just
the total number of all partitions of the set {1, 2, . . . , k + 1} [3, p. 210], we deduce:

Lemma 3.

Bk+1 =
k+1∑
j=1

S(k + 1, j).
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3. A generating function for uk

We must first demonstrate that
∑∞

n=1 nk · n! = vk − ukα, where α =
∑∞

n=1 n!
and vk and uk are integers. Notice that

∑∞
n=1

(
(n + k)!− n!

)
is a telescoping sum

that equals −
∑k

n=1 n!. For k = 2 this becomes,

∞∑
n=1

(
(n + 2)!− n!

)
=

∞∑
n=1

n!
(
(n + 2)(n + 1)− 1

)
,

∞∑
n=1

n2 · n! = −
∞∑

n=1

n!.

An inductive argument now shows that
∑∞

n=1 nk · n! can be written as vk − ukα
where vk, uk ∈ Z.

Observe now that for the same sum,
∞∑

n=1

(
(n + k)!− n!

)
=

∞∑
n=1

(n− 1)!{(n + k)(n + k − 1) · · ·n− n}

=
∞∑

n=1

(n− 1)!〈n〉k+1 −
∞∑

n=1

n!.

Hence applying Lemma 1,

−
k∑

n=1

n! + α =
∞∑

n=1

(n− 1)!〈n〉k+1

=
∞∑

n=1

(n− 1)!
k+1∑
j=1

|s(k + 1, j)|nj

=
k+1∑
j=1

|s(k + 1, j)|
∞∑

n=1

nj−1n!.

Letting
∑∞

n=1 nj−1n! = vj−1 − uj−1α gives

−
k∑

n=1

n! + α =
k+1∑
j=1

|s(k + 1, j)|{vj−1 − uj−1α}.

If we now suppose that α is irrational, then this yields

k+1∑
j=1

|s(k + 1, j)|vj−1 = −
k∑

n=1

n!,(3.1)

k+1∑
j=1

|s(k + 1, j)|uj−1 = −1.(3.2)

Removing absolute values from equation (3.2) we get

(3.3)
k+1∑
j=1

(−1)js(k + 1, j)uj−1 = (−1)k.
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Applying Lemma 2 to equation (3.3) yields one generating function. Let fk+1 =
(−1)k+1uk and gj = (−1)j−1 to get

fk+1 = (−1)k+1uk =
k+1∑
j=1

S(k + 1, j)gj

=
k+1∑
j=1

(−1)j−1S(k + 1, j).

Thus,

Lemma 4.

(−1)kuk =
k+1∑
j=1

(−1)jS(k + 1, j).

This is a simplification of the method of solving k + 1 linear equations to
determine each uk outlined by Dragovich [5, p. 101]. Using this relation, the first
few terms in the sequence {uk} can be easily calculated:

{0, 1,−1,−2, 9,−9,−50, 267,−413,−2180, 17731,−50533,−110176,

1966797,−9938669, 8638718, 278475061,−2540956509, 9816860358 . . . }

This is the negative of sequence A014182 of Sloane [10]. Lemma 4 implies the
crucial result

Lemma 5.

uk ≡
k+1∑
j=1

S(k + 1, j) (mod 2).

Other generating functions for the uk also exist. Now we caution the reader that
below, the series being considered are not p-adic series but usual series involving
real numbers.

Lemma 6.

(−1)kuk = e
∞∑

n=0

nk+1

n!
(−1)n.

Proof. Recall the known identity [3, p. 204]

S(k + 1, j) =
1
j!

j∑
r=0

(−1)r

(
j

r

)
(j − r)k+1.

Now,

(−1)kuk =
∑
j≥1

(−1)jS(k + 1, j)

=
∑
j≥1

(−1)j

j!

∑
0≤r≤j

(−1)r

(
j

r

)
(j − r)k+1

=
∑
r≥0

(−1)r

r!

∑
j≥r

(−1)j

j!
j!

(j − r)!
(j − r)k+1
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=
∑
r≥0

1
r!

∑
j≥r

(−1)j−r

(j − r)!
(j − r)k+1

=
∑
r≥0

1
r!

∞∑
n=0

nk+1

n!
(−1)n

(−1)kuk = e
∞∑

n=0

nk+1

n!
(−1)n. �

Lemma 7.
∞∑

k=0

(−1)kukT k

k!
= −e−eT +T+1

Proof.

∞∑
k=0

(−1)kukT k

k!
= e

∞∑
k=0

T k

k!

∞∑
n=0

(−1)nnk+1

n!

= e
∞∑

n=0

∞∑
k=0

T knk

k!
(−1)nn

n!

= e
∞∑

n=1

(−1)n

n!
neTn

= −e
∑
n=1

(−1)n−1

(n− 1)!
eT (n−1)eT

= −e · e−eT

· eT

∞∑
k=0

(−1)kukT k

k!
= −e−eT +T+1.

Since eeT−1 =
∑

BkT k/k! [3, p. 211], applying the remark made earlier about
the multiplication of exponential generating functions and Lemma 7, we see that( ∞∑

k=0

BkT k

k!

)( ∞∑
k=0

(−1)kukT k

k!

)
= −

∞∑
k=0

T k

k!

which proves

Lemma 8.
n∑

k=0

(
n

k

)
Bk(−1)n−kun−k = −1.

4. Congruences for {uk}

There are several interesting congruence relations for {uk}.

Lemma 9. For every prime p, up−1 ≡ −2 (mod p).



6 M. RAM MURTY AND SARAH SUMNER

Proof. Recall that S(p, 1) = S(p, p) = 1 and that for 2 ≤ k ≤ p − 1,
S(p, k) ≡ 0 (mod p), [3, p. 219]. Observe,

(−1)p−1up−1 =
p∑

j=1

(−1)jS(p, j),

(−1)p−1up−1 ≡ (−1)S(p, 1) + (−1)S(p, p) (mod p),

up−1 ≡ −2 (mod p). �

Lemma 10. For every prime p, up ≡ −1 (mod p).

Proof. Substitute the recurrence S(k+1, j) = S(k, j−1)+jS(k, j), [3, p. 208]
into

(−1)pup =
p+1∑
j=1

(−1)jS(p + 1, j),

−up =
p+1∑
j=1

(−1)jS(p, j − 1) +
p+1∑
j=1

(−1)jjS(p, j),

−up ≡ −up−1 + (−1)S(p, 1) (mod p),

up ≡ up−1 + 1 (mod p),

up ≡ −2 + 1 (mod p),

up ≡ −1 (mod p). �

Using the fact that for every prime p,(
pr

k

)
≡ 0 (mod p)

whenever 1 ≤ k ≤ pr − 1 along with Lemma 8, we conclude

Lemma 11. Let p be a prime number. For every r ≥ 1,

Bpr − 1 ≡ (−1)pr

upr (mod p).

5. A general theorem

Theorem 1. If k ≡ 0 or 2 (mod 3) then uk 6= 0, and hence in these cases αk

will be irrational provided α is.

Since we have already shown in Lemma 5 that

uk ≡
k+1∑
j=1

S(k + 1, j) ≡ Bk+1 (mod 2),

Theorem 1 will follow from the following lemma:

Lemma 12. If k ≡ 2 (mod 3) then Bk is even, otherwise Bk is odd.

Proof. We will proceed by induction. B0 = 1, B1 = 1 and B2 = 2, so the
base cases are clear. Suppose the lemma is true for all j ≤ k. Recall the recursion
for Bk+1,

Bk+1 =
k∑

j=0

(
k

j

)
Bj .
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By the induction hypothesis, if j ≡ 2 (mod 3) then Bj is even, and otherwise Bj

is odd. Hence the recursive formula becomes∑
j 6≡2 (mod 3)

(
k

j

)
≡

∑
j≡0 (mod 3)

(
k

j

)
+

∑
j≡1 (mod 3)

(
k

j

)
(mod 2).

Let ζ = e2πi/3 be a cube root of unity. From the binomial theorem, we see

k∑
j=0

(
k

j

)
xj = (1 + x)k,

k∑
j=0

(
k

j

)
ζjxj = (1 + ζx)k,

k∑
j=0

(
k

j

)
ζ2jxj = (1 + ζ2x)k.

Adding these together we get

k∑
j=0

(
k

j

)
xj(1 + ζj + ζ2j) = (1 + x)k + (1 + ζx)k + (1 + ζ2x)k.

Let x = 1.

k∑
j=0

(
k

j

)
(1 + ζj + ζ2j) = 2k + (1 + ζ)k + (1 + ζ2)k.

Recall

1 + ζj + ζ2j =

{
3 if j ≡ 0 (mod 3)
0 otherwise.

So

3
∑

j≡0 (mod 3)

(
k

j

)
= 2k + (1 + ζ)k + (1 + ζ2)k

= 2k + (1 + ζ)k + (1 + ζ−1)k

= 2k + 2<(1 + ζ)k

= 2k − 2<(ζ2k).

Let us note that

(5.1) ζ2k =


1 if k ≡ 0 (mod 3)
ζ if k ≡ 2 (mod 3)
ζ2 if k ≡ 1 (mod 3).
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Now for the other sum. Consider
k∑

j=0

(
k

j

)
xj = (1 + x)k,

k∑
j=0

(
k

j

)
ζj−1xj = ζ−1(1 + ζx)k,

k∑
j=0

(
k

j

)
ζ2j−2xj = ζ−2(1 + ζ2x)k.

Adding these together gives
k∑

j=0

(
k

j

)
xj(1 + ζj−1 + ζ2j−2) = (1 + x)k + ζ−1(1 + ζx)k + ζ−2(1 + ζ2x)k.

Let x = 1
k∑

j=0

(
k

j

)
(1 + ζj−1 + ζ2j−2) = 2k + ζ−1(1 + ζ)k + ζ−2(1 + ζ2)k.

Now

1 + ζj−1 + ζ2j−2 =

{
3 if j − 1 ≡ 0 (mod 3)
0 otherwise.

.

Hence,

3
∑

j≡1 (mod 3)

(
k

j

)
= 2k + ζ−1(1 + ζ)k + ζ(1 + ζ−1)k

= 2k + 2<ζ(1 + ζ−1)k

= 2k + 2<ζ(1 + ζ2)k

= 2k + 2<ζ(−ζ)k

= 2k + (−1)k2<(ζk+1).

Now

(5.2) ζk+1 =


1 if k + 1 ≡ 0 (mod 3)
ζ if k + 1 ≡ 1 (mod 3)
ζ2 if k + 1 ≡ 2 (mod 3).

Combining the information in equations (5.1) and (5.2), we see that if k ≡ 1
(mod 3) then Bk+1 ≡ 0 (mod 2), and if k 6≡ 1 (mod 3) then Bk+1 ≡ 1 (mod 2)
proving Theorem 1. �

6. Concluding remarks

The non-vanishing of uk is a conjecture of Wilf (see [7]). In [11], it is proved
that the number of k ≤ x with uk = 0 is O(x2/3).

Other questions deserving attention linked to the study of {uk} concern the
existence and properties of p-adic interpolation of functions of the form

f(s) =
∑

ns · n!.
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If the sum is taken over all odd numbers n, then it can be shown that f(s) has
a 2-adic interpolation, which raises the question of whether {uk} and {vk} have
2-adic limits or not. Similar questions can be raised about p-adic interpolation and
limits for odd primes, which seem to be more involved cases.
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