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PRIME DIVISORS OF FOURIER COEFFICIENTS OF
MODULAR FORMS

M. RAM MURTY AD V. KUMAR MURTY

1. Introduction. The Ramanujan z-function is defined by

oo

qn)9-4
oo

A =q I-[ (1- z(n)qL
n----1 n---1

Ramanujan [6] investigated the divisibility properties of z(n) and conjectured
that z(n)----0 (mod 691) for almost all n. This was verified by Watson [12]. ,Serre
[9] has strengthened this to the following assertion: given an integer d, we have
’(n) 0 (modd) for almost all n (i.e., for all n excepting a set of density 0). In
fact, Serre’s result holds for the Fourier coefficients of modular forms of integral
weight for any congruence subgroup of SL2(Z).
The purpose of this paper is to further investigate the divisibility properties of

these coefficients. For definiteness, we shall state the results for ’, though they
apply to more general multiplicative functions.
We first prove the following strengthening of Serre’s result" given d as above,

’(n) is divisible by d’, where to [loglogn], for almost all n. (Here is a
positive constant depending on d.) We then consider the effect of varying d.
Denote by ,(n) the number of distinct prime divisors of n. Assuming the
Generalized Riemann Hypothesis (GRH), we show that

and

(,(z(p))- loglogp)2<< z(x)loglogx
(p)/o

(t, (’r (n)) 1/2 (log log n)2)
2

<< x (log log x)31og4x.
z(n):/=O

(Here, log4x log logloglogx.) In particular, given > 0, we have

Ip(’(p)) log log pl < (log log/9) 1/2+’
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58 M. RAM MURTY AND V. KUMAR MURTY

for almost all primes p. These estimates are the "modular analogues" of the
classical result of Hardy and Ramanujan [4] that

E (v(n) loglogn)2<< x loglogx.
nx

Observe that v(z(n)) is neither a multiplicative nor an additive function, and so
seems to fall outside the scope of existing generalizations of the Hardy-
Ramanujan estimate (see for example, Elliott [2]).

Using our estimates, it is possible to deduce that for any > 0, we have

loglz(p)[ > we-2Wlog p > (log

for almost all p, where w (loglog p)1/2+,. Of course, this falls far short of what
is expected. For example, the above bound does not give Iz(p)l > p’, whereas it
is conjectured [9] that

I,r(p)l >>p9/2-"

for all primes p.
Finally, we remark that the full strength of the GRH is not needed in the

above results. Indeed, let

rr*(x,d) # (p < xlp prime and z(p) ----0 (modd)).
It is known that rr*(x,d)8(d)rr(x) for some 8(d) > 0. The GRH implies that
uniformly in d,

,n’*(x,d) (d),n’(x) + O(d3xl/21ogx)
and in particular, that

I*(x,d) (d)(x)l << xl/2+4Ologx.
d<x

For our purposes, it would suffice to know that

Ir*(x,d) (d)r(x)l << x

d(xl/F(x) (logx)l+v

for some y > 0, and some monotone increasing function F such that F(x) >
and F(x) o(log log x). It would be of interest to know whether this estimate can
be proved by known techniques of analytic number theory.
As mentioned above, our methods work for a large class of multiplicative

functions. We shall present the general case in Sections 2, 3 and 4. In Section 5,
we shall specialize to modular forms. The applications to lower bounds are
discussed in Section 6.
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Notation. Throughout, p, q,r, p, P2 denote rational primes; r(x) denotes the
number of primes < x; v(n) denotes the number of distinct prime divisors of the
rational integer n. We say that a sequence (an)n I has normal order (bn). I
(I some indexing set) if for any > 0,

:g: {n < x, n I and [a b.l < eb.)
#{n<x,nI)

--->1 as x ---> .
2. Divisibility by a fixed integer. Let f be a nonzero multiplicative function

f" N--> from the natural numbers to the ring of integers of an algebraic number
field. We define for each d Z

r (x,d) # ( p < x If(p) 0 (modd)}.

Suppose that the following holds"

there is a function such that try* (x,d)-3(d)r(x) as x ---> . (,)

THEOREM 2.1. Let d be a fixed positive integer and e > O. Then, for almost all
n, f(n) is divisible by

d -,)8(d)log log nl.

Proof. Define

v(d,n) # {p [Plln andf(p) =. 0 (modd)},

Then, we have

E v(d,n)= E Z 1.
n<x pa<x

f(p)---0 (mod d) Plln

The contribution from all terms with a > 2 is clearly O(x). For the remaining
terms, we have

x + ) E x + O(x)E E -_
p<x n<x p<x t7 t p<x t

f(p)=--O (mod d) plln f(p)=O (mod d) f(p).O (mod d)

(8(d) + o(1))xloglogx
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using (,) and partial summation. Next,

E E
n < x P,,P2 < x

f(pO=--f(pD=___O (rood d) plln

P211n

+ O(xloglogx)

PiP2 < x

P
f(pl)=f(p2)=O (rood d)

X.. @(plP2)
PiP2 PIP2

+ O(1)) + O(x loglogx)

p<x
f(p)=---O (mod d)

+ 0(x log log x)

(8(d)2 + o(1))x(loglogx)2.

Hence,

E (v(d,n)- 8(d)loglogx)2= o(x(loglogx)2).
n<x

It is easily deduced that

E (v(d,n)- t(d)loglogn)2= o(x(loglogx)2).
n<x

Thus, given > O, we have v(d,n) > (1 )8(d)loglogn for all but o(x) of the
n < x. This proves the result.

[}3. Prime divisors of f(q). In this section, we shall suppose that the functionf
of 2 takes values in the rational integers (i.e., Z), Our purpose is to study
the normal order of v(f(q)).

Let F:lq--> R be a monotone increasing function such that F(x)= O(logx)
and F(x) > 2. Let y y(x)= x l/F(x). Define

Zf(x) :t#: { p <.< x If(P) 0)
and

rrf(x,d) # ( p < x, 0 : f(p) = 0 (modd)).
Throughout this section, we shall suppose that the following hold:

(C1) there is a function " N-> Iq>0 such that

,n’f(x,d),-..,(d),n’(x) as x ov
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and satisfying 8(pq)= 8(p)6(q)+ O(1/pq(p + q)) for all large distinct primes
p,q.

(C2) there exists a fl > 0 such that If(n)l < n/ for all n
(c3)
(C4) Zf(x)= o(r(x)).

Note that given (C4), the 8 of (C1) is the same as in (,). To simplify the
exposition, we shall also assume that

p

for all sufficiently large p. Such a restriction is certainly not necessary, and the
reader is referred to Remark 2 at the end of this section, where a more general
case is briefly discussed.

THEOREM 3.1. Let vu(n) denote the number of distinct prime divisors of n which
are less than u. Then

E’ (vu(f(q))- loglogu)2

q<x

Zf(x)(loglogu)2/ O(r(x)loglogu)/ O(r(x)F(x)2)
where the prime on the sum indicates that only those q with f(q) va 0 are included.

Remark. If u2 < y, the second 0-term may be dropped. If f" < u < y, the
second 0-term may be replaced with O(r(x)F(x)loglogu).

COROLLARY 3.2. Suppose that F(x)= o(loglogx). Then

,,’ (v(f(q))- loglogq)2= o(r(x)(loglogx)2).
q<x

In particular, v(f(q)) has normal order log logq.

The proof depends on several lemmas. First, it is convenient to define the set

(d) (qlO4 f(q) 0 (modd)).

Thus rf(x, d) # q < x[ q (d)).

LEMMA 3.3. rf(x, d)= 0 unless d < x.
Proof. If q < x and q f(d), then d < ]f(q)l < q/ < x#

LEMMA 3.4, If u < y, then. err(X, p)- ’tr(x)loglogu + O(r(x)).
p<u
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If u > y, then

] tf(x, p)= r(x)loglogx + O(;(x)F(x)).
pu

Proof. If u < y, it follows from (C3) that

off(x, p) r(x)(p) + O(r(x)) rr(x)loglogu + O(r(x)).
p<u pu

If u > y, then

y<p<u q<x y<pu
p f(q)

1<< E’ !,ogx << rr(x)F(x).
q<x log y

Remark 3.5.
that

More generally, it can be proved by essentially the same method

E
d<x
r(d)= k

tt2(d)rrf(x,d) r(x)(lglgx)’ + O((x)F(x)(loglogx)k-’).

We shall use this, in the case k 2, in 4.

Proof of Theorem 3.1. First suppose that U2 y. Then

’ Uu(f(q)) r(x)loglogu + O(r(x)).
q<x

(3.1)

To see this, write the left hand side as

q<x Plf(q) p<u
p<u

and apply Lemma 3.4. Next, we shall check that

E’ v(f(q)) z’(x)(loglogu)2 + O(r(x)loglogu).
qx

(3.2)

Indeed, the sum on the left is

E’ E 1= E
q < x Pl,fl2 < u Pl,fl2 < u

Pl,P21f(q) P vP2

rf(x, P,P2) + O(r(x)loglogu).

Using (C1) and (C3), the first sum may be written as

E
P,P2 < u

P =/=P2

(p,p2)r(x) + O(rr(x))= z’(x)(loglogu)2+ O(r(x)loglogu).
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Now (3.1) and (3.2) together imply the theorem. If /,/2 > y, then by the Schwarz
inequality

2’ (Vu(f(q))- loglogu)2<< ’ (vG(f(q)) -loglogu)2

q<x qx

+ ’ (Vu(f(q))- v(f(q)))2.
q<x

Since v.(f(q))- vf(f(q))= O(F(x)), the second sum on the right is O(r(x)
F(x)2). This completes the proof.

Corollary 3.2 follows from the theorem by using the Schwarz inequality and
(C4).

Remarks. 1. (C4) was only used to deduce Corollary 3.2. We observe that if f
vanishes on a set of primes of positive density, v(f(q)) does not have a normal
order. This follows from Theorem 3.1.

2. Set D(x)= ?<x 8(P). Under some suitable hypotheses, the above method
will show that v(f(q)) has normal order D(q). For example, the following
assumptions would suffice in place of the assumption 8(p)= 1/p + O(1/p2):

(i) D(x)- D(x 1/2) O(1)
(ii) r>x 3(p)2 O(1/x)
(iii) (C3) holds with F(x)= o(D(x)).
3. There should be no difficulty in removing the assumption that g Z, but

we have not carried it out.

4. Prime divisors of f(n). As before, f is a nonzero integer valued
multiplicative function. We shall suppose that it satisfies hypotheses (C1), (C2)
and the following strengthening of (C3) and (C4):

x for some >0(C3’)
a<

Irf(x’d) 6(d)r(x)l <<
(logx) ’+v

(C4’) Zf(x) <<
(logx)+

As before, we shall continue to assume that 6(p) (1/p) + O(1/p) for all large
p. Our aim in this section is to prove the following.

THEOREM 4.1.

X’ ( (log log n):) log4x)(log log x
.<x

v(f(n)) - << x(F(x) + )3.

The proof will require several lemmas.
Let d be a positive integer, and define

nBa(x> # (n < x dl n, (d, -d ) =1 andf(n)V 0}.
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We shall need an asymptotic formula for Bd(X) which is uniform in d. The case
d = is described in Serre [10, [}6.3] and we follow his approach.

Let fo(n) if f(n) v 0 and fo(n) 0 if f(n) 0. Define a function ca by

(n)ca(n)= g - fo(e)
eln

(e,d)---

Then ca is multiplicative and

We have

eln { f0(n) if (n,d)=Cd(e)---
0 else.

(oo fo(pm)P -ms )1----1 )1 + E
+ .a cd(pm)p -ms=

ps m---1

m=|

We find that

if pXd

if pld.
(4.1)

--J-1 1+ E fo(pm)pps m-I + O(p -2s )p

if f(p) v 0

if f(p) O.

LEMMA 4.2. Iff(d) v O, then

Bd(X) chd - + 0 T(d) x__.
d (1 + log(x/d)) ’+v

uniformly for d < x. Here

is the density of integers n such that f(n) :/: 0 and

,a q(d)d pI-d 1+ m=lE CI(pm)P (4.2)

Proof. We have

xE Ecd(e)=-
m<x/delm

+o E Ica(e)l
e<x/d e e<x/d
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For each integer e, let e be the largest divisor of e which is coprime to d, and
write e ele2. Then (el,e2)= and cd(el)= cl(e), Cd(e2)= /x(e2). Hence

Ica(e)l ,* Ica(eu)l Ica(el)l < 2E(d) Icl(e,)l
e < x/d e2 < x/d e < x/de2 e < x/d

(e,d)--

where the * on the sum indicates that pie2 pld. From (C4’), it follows that

icl(n)l<< x
n<x (logx)+

(see, for example, Wirsing [13, p. 89]). Hence,

icd(e)l<<2  a x.
e<x/d d (1 + log(x/d)) l+v

By a similar method

E ICd(e)ll<<2<d)X"
e>x/d e d (1 + log(x/d)) ’+v

The lemma is proved if we observe that =cd(e)/e chd, as follows from
(4.1).
We also note the following as it will be useful later on.

LEMMA 4.3. We have ’d %ld(1 + O(1/p)).

Proof. This follows from (4.1) and (4.2).
For an integer n, let n rpll,,p and write n nln2. Let vl(n) v(f(n)) and

v2(n) v(f(n2)).

LEMMA 4.4.

_’ v(f(n)) ]’ Pl(n) -F O(x)
n<x n<x

’v2(f(n)) ’vzl(n)+O(xl/2(_a’t,zl(n)) 1/:z) +O(x).n<x n<x n<x

Proof. We have vl(n) < v(f(n)) < v(n) + v2(n). Also,

Using the trivial estimate v(n) < logn, and condition (C2), we find that this sum
is O(x). A similar argument also shows that ’n<xV22(n)= O(x). Now the first
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statement of the lemma follows immediately, and the second follows from an
application of the Schwartz inequality.

Define the sums

p<x q<x
qf(p)

r(x = E E
p<xt m--qqx

q <q
q,q(p)

Bin(x).

As is easily verified, these sums are related to the average of , as follows:

S(x)- T(x) < _’ t,,(n) < S(x). (4.3)

Next, we find estimates for S and T.

LEMMA 4.5.

1 _1 (loglogx)2+ O(F(x)loglogx).
p<x qx q 2

qfl(p)

Proof. By partial summation, the sum in question is

rf( p)-- =Z,+Z2 (say).
p,; x0

By Lemma 3.4,

l ((
logx (loglogx + F(x)).

Using also Lemma 3.3,

p xt p<t# t2

x dt(r(t)loglogt + O(r(t)F(t))) -1 (loglogx)2 + O(F(x)loglogx)2

proving the lemma.
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LEMMA 4.6. S(x) (1/2)cx(loglogx2) + O(xF(x)loglogx).

Proof. Using Lemma 4.2, we find that for any w < x/3,

p<xO q < w
+ 0

q(log(x/ q))l / v
+ 0 xlog -q f(p)

By Lemma 4.3, q + O(1/q). Hence, the first sum is

(
p<xt qx q p q - + 0 xlog

q f(p)

The first 0-term is easily checked to be O(x) by an argument similar to that used
in Lemma 4.4. Finally, the second sum in (4.4) is

x

"’(log(x/w)) ’+v p<x/ q<x q
q f(p)

The lemma now follows if we apply Lemma 4.5, and choose, for example,
w x/logx.

LEMMA 4.7. T(x) << x(F(x)+ log4x)loglogx.

Proof. Let z log logx. We write T(x)= E1 + E2 where in El, p < z and in
2, Z < t < X ft. Now,

1 < E E Bq(X) << X E E !
p<, q<x p<z q<,x q

pU(p) qU(p)

and using the method of Lemma 4.5, we find that

E << x(loglogx)(loglogz + F(x)).
As for E2, we use partial summation to write

(x)rf -l’ p rx/q, dt"[" / (t’ p) X (]3 q" ]4) (say).
z<p<x q<

q (p)

By Lemma 4.5,

(loglogx)2
.._.1 ] <<]3 <<
log x z<p<xa q<vr-; q logx

q f(p)
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Also, since z < p < q(, we have

fx/q, E r/(t,p) .
plf(qO

The inner sum can be written as

((t) )(p)r(t)+ 0
(lgt)

+ r/(t,p)
z<p<w
p lf(q) p lf(q)

where w max(tl/F(t),z). (Here we have used (C3’).) Thus we can write

in an obvious way. Now, 42 O(loglogx). Also

z<p<xa q
q f(p)

The term in brackets is

E
z<p<x#

+ o( (t)
z(logt) "r -I-O

Z t2’

where we have used (C3’). The integral is << z-(loglogx)(1 + F(x))<< F(x).
Hence E4 O(F(x)). Finally, the number of primes p such that p > w and
p If(q) is

logf(ql)
O0 log w log
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Hence,

logq dtfx/q,r(tlF(t) iog’t’ 2

<< F(x)

_
lgql fqOO dt << F(x)loglogx

q,<ff ql t(log/)2

Hence 4 O(F(x)loglogx) and this completes the proof of the lemma.
Combining Lemma 4.4, (4.3), Lemmas 4.6 and 4.7, we deduce that

_’ v(f(n)) 1/2 cx(loglogx)2+ O(x(F(x) + log4x)loglogx).
n<x

We next investigate the average order of v2(f(n)).
LEMMA 4.8.

(4.4)

’ vZ(f(n)) 1/4 cx (log log x)" + O(x(F(x) + log4x)(loglogx)3).
n<x

Proof. Using (4.4) and the Schwarz inequality, we have

_’ v2(f(n)) > 1/4 cx(loglogx)4+ O(x(F(x) + log4x)(loglogx)3),
n<x

so it suffices to prove an asymptotic upper bound. We can replace v(f(n)) by
vl(n) by Lemma 4.4.
We define the sums

r (x,d)
r<x r
f(d)

T2(x, dl ,d2) E )kin
m < x rn
m rlr

=#r

rl tE (dl), r2 E (d2)

where d, d2 are distinct. Then, using Lemma 4.2, and (4.4),

+ O(x(loglogx)) + O(E)
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where

E__xEE
pq<xa m m(1 + log(x/m))l+
pvq

the inner sum ranging over the same set of integers m as in T2(x, pq).
First, we consider the main term. We have

where the sum in the O-term is over m < x such that m rlr2, r (p),
rE (q), r :/: rE, and either r or rE is > x 1/2. Using Lemma 4.5, we see then
that

111p,q < x# p< x# x/2 < r < x
Pq r f(p)

( q<x r2<x
r2 f(q)

Also, by Lemma 4.5,

<< (log log x)(log log x)2= (loglogx)3.

E TI(Xl/2, )2( E X X
p<xB <x r" p<xB r2<x 2 << (loglogx)a"

r2(p)

Hence,

p,q < xl

P#q

(T2(X’ ’q) E TI(xl/2, ) E Tl(xl/2, p)2+ O((loglogx)3)
p<x px

=[ 1/2 (loglogx)2 + O(F(x)loglogx)]2
+ O((log log x) )
1 (loglogx)4+ O(F(x)(loglogx)3)4

Next, using Remark 3.5 with k 2, and the method of Lemma 4.5, it is easy to
check that

E 7 << (lglgx)3"
rxpq< X

pvq r-(pq)
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And finally, we write E E + E2, where in El, m is less than w x/logx, and
iI1 E2, w < m < x. By Lemma 4.5,

El<< x
7 <<x(lglgx)a-v

(loglogx)l + p<x r<x
rft(p)

Also, by Lemma 4.5,

p<x# rl<x rl w
<r2<

x

(p) r! r!

v(f(r2))
r2

x<< x(loglogx)Elog( ) x(loglogx)3.

This completes the proof of Lemma 4.8.

Proof of Theorem 4.1. This follows from (4.4) and Lemma 4.8.
Theorem 4.1 implies that if F(x)= o(log log x), v(f(n)) has normal order

1/2(loglogn)2. More generally, under suitable hypotheses, v(f(n)) should have
normal order

f22n D(t)
dr.

log

5. Applications to modular forms. Let f be a cusp form (of integral weight
k > 2) for I’0(N), which is a normalized eigenform for the Hecke operators, and
let X be its Nebentypus character. (This usage of the symbol f should not be
confused with the multiplicative function of the previous sections.) Write

f= ,n>ane2rinz for its Fourier expansion at , and suppose that the an are
rational integers. (This forces X to be real and X is nontrivial if and only if f has
complex multiplication (cf. [7]).) Then, the function n -> a is multiplicative.

Let G Gal(O/O) and let d be a positive integer. Then by Deligne [1], there is
a representation

(where the product is over distinct prime divisors of d) with the following
essential property" if p is a prime not dividing dN and op a Frobenius element at
p in G, then Pd is unramified at p and

trtad(oe) ae detOd(Oe) =pk-x(p).
Denote by ffd the reduction modd of

d.G ,d.> GL2(lI-idZt) >> GL2(Z/d)"
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Let Hd be the kernel of d, Kd the subfield of C} fixed by Hd, and
Gd G/Hd Gal(Kd/O). Let Cd be the subset of d(G) consisting of elements
of trace 0, and let 6(d)=
The condition aq 0 (mod d) (for q a prime not dividing dN) means that for

any Frobenius element % of q, d(Oq) Cal. Hence by the (ebotarev density
theorem applied to Kd

Ic l,t/f, (x,d) d2 # ( q < x aq 0 (modal)) -r(x)

As Cd contains the image of complex conjugations, it is nonempty.

PROPOSITION 5.1. Let f be as above. Let m be a fixedpositive integer and > O.
Then for almost all n, a is divisible by

m[ )6(m)log log n].

Proof. The result follows from Theorem 2.1 since (5.1) shows that (.) of 2
holds.
By abuse of notation, we shall write

rf(x,d)= #{q < xl_0 :/: aq=O(modd))

Zf(x) # ( q < X aq O}.

By the Generalized Riemann Hypothesis (GRH), we shall mean the Riemann
Hypothesis for all Artin L-series.

L.MMA 5.2. Iff has complex multiplication, Zf(x),1/2r(x). Iff does not have
complex multiplication,

Zf(x) << {/(logx)3/2-" (for all , > O) unconditionally
3/4 on the assumption of GRH.

The first statement is implicit in Ribet [7] and the second in Serre [10, p. 175].

L.MMA 5.3. Suppose that f does not have complex multiplication. Then
ry(x,d)-(d)r(x). If the GRH is assumed, then for x > 2,

:f(x,d) 8(d)r(x) + O(daxl/Elog(dNx)) + 0(x3/4).

Proof.
assumed,

The first assertion follows from (5.1) and Lemma 5.2. If the GRH is

r (x,d) 8(d)r(x) + O(8(d)x/21og(lDdlXg))
where gd is the degree and Dd is the discriminant of ga/O (cf. Lagarias and
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Odlyzko [5]). Now from an inequality of Hensel, loglDd[ x< gdlOg(dNgd) (Cf. Serre
[10, 1.4]). Using the inequalities gd < d4 and < d3, we deduce that

r (x,d)= 8(d)r(x) + O(d3xl/Zlog(dNx)).
Now using Lemma 5.2, we deduce the second assertion of the lemma.

Suppose from now on that f does not have complex multiplication.

LEMMA 5.4. Iff is of level or of weight 2, then (1)= 1/1+ O(1/12) for all
sufficiently large primes land (ll’)--(l)(l’) for all sufficiently large primes l,l’.
In any case, 8(1) << / 1.

Proof. If f is of level or of weight 2, it has been shown by Swinnerton-Dyer
[11] and Serre [8] respectively, that for I sufficiently large,

Gt { g GLg(I=,) det g (F’)-’},
and for 1,1’ sufficiently large,

GI,= G GI,.

From this, it is easily calculated that ]C] l+ O(l-). Hence 8(/)= Ill +
O(1/Z2). Also 8(//’)= 8(1)8(1’).
Now, in general, or(G) is open in GL2(Zt) (cf. Serre [10, Prop. 17]). Thus, tat(G )

is a compact l-adic Lie group of dimension 4 and as in [10, 4.2], Ia l >> 14. Since
we clearly have IGI<</3, it follows that 8(1) << 1/1.

Remark. Ribet has pointed out to us that the lemma is true for weight > 2
without any restriction on level. This apparently follows from recent work of
Carayol.

PROPOSITION 5.5. Let f satisfy.
(i) f is a normalized eigenform of the Hecke operators with a Fourier expansion

ane2rinz)f=n>
(ii) f does not have complex multiplication.

Suppose also that the GRH is true. Then

and

(V(aq) loglogq)2<< r(x)loglogx
qx
aqvO. (V(an) 1/2 (loglogn)2)2<< x(loglogx)3(log4x).

n<x
a.

Proof. Condition (C1) and the assumption on hold by Lemmas 5.3 and 5.4.
By estimates of Hecke, lal < n/2/. Hence (C2) holds with fl 1/2(k + 1) for
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example. Condition (C3’) may be verified with y x 1/1 for example, and any, > 0, using Lemma 5.3. And (C4’) follows from Lemma 5.2. Thus the
proposition follows from Theorems 3.1 and 4.1.

6. Other applications. We can use the results of the previous section to
deduce lower bounds for the ap, valid for almost all p.

TORV. 6.1. Suppose f satisfies the hypotheses of Proposition 5.5. Then, for
any > O, we have

loglael > we-3Wlog p > (log p)-’

for almost all primes p, where w (log log p)l/2 /,.

Proof. Let h be a monotone increasing function such that h(x)= O(logx)
and h(x) 1. Let y x l/x. From Theorem 3.1, we find that

’ (t,y(ap) loglog y)2<< r(x)loglog y.
(1/2)x px

Let z p l/h(p). Then, for almost all p in between 1/2 x and x,

,y(ae) < loglog y + (loglog y)1/2+, < loglogz + (loglogz)l/2+’ < loglogz + w.

On the other hand, Proposition 5.5 implies that

,(ap) > log log p- w

for almost all p, Hence, for almost all p, ap has at least

(loglog p- w)- (loglogz + w)--- logh(p) 2w

distinct prime divisors larger than z. Now if we choose h so that logh 3w (say),
we find

lapl > z w

and the result follows on taking logarithms.

Remark. From a different point of view, if we assume the Sato-Tate
conjecture for f, then it is easy to see that

for almost all p.
Finally, we remark that Theorems 3.1 and 4.1 also apply to some classical

arithmetical functions. For example, we have the following.

THEOREM 6.2. ’(p + 1) has normal order loglog p. Also, ,((n)) and ,(o(n))
have normal order 1/2 (log log n)2.
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Proof. This follows on taking f(n) (now reverting to the notation of Sections
2-4) to be (n) or o(n). If r(x,d,a) denotes the number of primes p < x such
that p a (modd), then rf(x,d) r(x,d, 1) in the first case and r(x,d, l) in
the second. We may take fl 2, any > 0 and y--x I/2-F’, Then (C1) is the
prime number theorem, (C3’) is Bombieri’s theorem, and (C2), (C4’) are trivial.
This proves the result. The first assertion of the theorem is an old result of Erd6s
[3]. It is also possible to treat

f(n) o(n)=

_
d

din
d>

for k hi.

Let

0
a(k,p)=

(k,.p-1)
if (k,p- 1), 1/2(p- 1)
otherwise.

Then, in this case,

a(k,p) +0( )
and so our assumption on 8 is not satisfied. However, as mentioned at the end of
[}3 and [}4, the methods still work, and we find that ,(Ok(n)) has normal order
1/2 fl(k)(loglogn)2 where fl(k) is the number of odd positive divisors of k.
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