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1. Introduction.

Given a sequence of natural numbers, {a,}>°,, there are at least three
methods in analytic number theory to study properties of this sequence. The
first is the method of Dirichlet series. One associates the Dirichlet series

£(s) = f:
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and tries to obtain analytic (or meromorphic) continuation of the series to a
large enough domain. Then, from the analytic properties of f(s), one tries
to obtain information on the growth of the coefficients, or the asymptotic
properties of the summatory function

3" .

n<z

This can be viewed as the study of the sequence with respect to the usual (or
archimedean) absolute value. A second method is via the sieve technique.
One maps the sequence mod p as p ranges over a set of primes. Having some
information about the images, one tries to infer properties of the original set.
A third technique is the p-adic method, where the study is focussed on the
divisibility of the sequence with respect to a single prime. One tries to get
some p-adic analytic function to interpolate the values of the sequence and
in this way study the sequence. This method can be viewed as the study
of the sequence with respect to non-archimedean (or p-adic) absolute values.
From this perspective, the sieve method stands at the interface of the other
two methods.

It is however, not so well-known, that in many problems of a sieve na-
ture, a simple method involving Dirichlet series can be invoked to obtain very
precise information about the divisibility properties of a given sequence, es-
pecially when we are trying to sieve by a set of primes that can be described
by what we call a Chebotarev condition (see the definition below). This
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method invokes a variant of the classical Wiener-Ikehara Tauberian theorem
to derive the final asymptotic formula. Thus, the method cannot be deemed
“elementary” both in the technical sense and the practical sense. For most
applications, even this can be dispensed with and a simple argument using
the sieve of Eratosthenes suffices. The purpose of this paper is to first de-
scribe how Dirichlet series can be used to obtain sieve estimates for certain
types of problems, and second, how the sieve of Eratosthenes can also be
used to obtain similar (albeit weaker) estimates.

Our main purpose in this paper is to show that the sieve of Eratosthenes
suffices to derive some of the results of [Se]. Our paper was inspired by Serre’s
study of divisibility of Fourier coefficients of modular forms [Se]. There he
applies the method of Dirichlet series to deduce various theorems concerning
Fourier coefficients of Hecke eigenforms. A prototype of the theorems proved
in [Se] can be described as follows. Let 7(n) be the Ramanujan 7-function,
defined by the generating function

> 7(n)g" H (1-4q")
n=1 n=1

Fix a prime ¢ > 2. Then, almost all (in the sense of natural density) of the
coefficients 7(n) are divisible by £. Moreover,

X

#{n<z: 7(n)Z0(mod/l)} ~ W

for some 0 < () < 1.

After reviewing the method of Serre [Se|] and making note of its virtues
and limitations, we describe how the sieve of Eratosthenes can be invoked to
get similar results, which are only “weaker” by a “log log 2” factor. However,
the latter method is more versatile and can be applied to contexts where the
Chebotarev condition (or the “Frobenian property” as Serre calls it) may not
hold. The last part of the paper deals with applications of the results.
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2. The Method of Dirichlet series.

Let P be a set of primes and let P indicate its complement in the set of
primes. One of the basic problems in sieve theory is to count the number of
n < x which are not divisible by any of the primes in P. In other words,
we want to count the numbers < x which are composed of primes solely
belonging to P. This suggests we define the Dirichlet series

so that a,, = 1 if n is not divisible by any prime of P and 0 otherwise. We
are therefore interested in the summatory function

D an

n<x
which by the familiar Perron formula (see for example, [M, p. 54-57]) can be
written as 1 o+
100 s
— —ds.
271 /zioo /() S s

Clearly, f(s) converges absolutely in the region Re(s) > 1. Here is the variant
of the classical Tauberian theorem that Serre uses.

Theorem 1. Suppose that we can write

h(s)

f(é’):m

with h(s) holomorphic in the region Re(s) > 1 and non-zero there. Then,

Za,nN Cx

e (log z)e
with ¢ = h(1)/T'(1 — «), where T" is the usual Gamma function.

We will derive an application of this result which will be useful in some of
the results to be derived below. This involves the enumeration of squarefull
numbers. Recall that a natural number 7 is called squarefull if for every prime



p|n, we have p*|n. If we let a, = 1 when n is squarefull and 0 otherwise,
then it is easy to see that

Notice that the Euler factor is, with x = p~*, equal to
1+22(1—-2)t=(1-2%)"(1 +2°)

so that we can write it as

We see immediately that

9(s) = ¢(25)h(s),

where h(s) is analytic for Re(s) > 1/3, and ((s) denotes the Riemann zeta
function. Changing s to s — 1/2, we find that

3 “"n—‘/ﬁ = ((25 — 1)h(s — 1/2).

n=1

The right hand side is analytic in Re(s) > 1 apart from a simple pole at
s = 1. Theorem 1 implies
> anyn~cx

n<z
for some non-zero constant c. Partial summation implies

Zan ’\“Cl\/E

n<x
for some non-zero constant ¢;. We also deduce that

1oL

n>y VY
where the dash on the summation means that we sum over squarefull num-
bers. This fact, which will be useful below, easily follows by partial integra-
tion and we leave it as an exercise.



3. Applications.

We will say that a set of primes P satisfies the Chebotarev condition if
there exists a Galois extension K/Q of finite degree with Galois group G
and a subset D of GG stable under conjugation such that for all primes p
sufficiently large, p € P if and only if the Artin symbol 0,(K/Q) € D. If we
let 5 = |D|/|G] then it is easily seen by using the orthogonality relations for
Artin L-functions that for P satisfying the Chebotarev condition,

1 1
> = flog () +0(6)
pep P s—1

where 6(s) is a function regular in Re(s) > 1. One can apply Theorem 1
with a =1 — 8 to deduce

Zan - Cx

n<zx

(logz)!=7#

for some constant ¢ # 0, where a, = 1 if n is composed of only primes from
P and is zero otherwise.

By considering the product

I 1+ 5)

we see that Theorem 1 can be applied to show that

S 12 (n)ay ~ __ar

n _ R
where ¢; is a non-zero constant and p denotes the Mdbius function. Thus,
the number of squarefree n < x composed of prime numbers of P also has
similar asymptotic behaviour.

For example, if we wanted to count the number of natural numbers < z
which can be written as the sum of two squares, then by elementary number
theory, we see that this is a sieve problem. After some reflection, this reduces
to the counting of the number of n < z which are not divisible by any
prime = 3( mod 4). This latter set of primes clearly satisfies the Chebotarev
condition with K = Q(v/—1) whose Galois group is of order two and we may
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take D to be the non-identity element. Thus, 8 = 1/2 and we deduce that

the number of such integers is
~ cx/\/logx,

for some non-zero constant.

A more striking example can be given with the Euler ¢-function. Apart
from ¢(1) and ¢(2), we note that ¢(n) is always even. If we fix any odd prime
¢, we can deduce that for almost all n, ¢(n) is divisible by £. Indeed, the
set of primes Z 1( mod /) satisfies the Chebotarev condition with K = Q({,)
whose Galois group is isomorphic to (Z/¢z)* so that we may take for D the
non-identity elements of the Galois group. This is because p = 1( mod ¢) if
and only if p splits completely in K. Therefore, the number of n < z, which
are not divisible by a prime p = 1( mod ¢) is by Theorem 1,

CX
"~ (logz) /@D

Therefore, almost all numbers are divisible by a prime p = 1( mod ¢). This
means, for almost all numbers, ¢ divides ¢(n).

The result involving Ramanujan’s 7-function follows from a result of
Deligne [D] who showed the existence of an ¢-adic representation

pe : Gal(Q/Q—GLy(Zy)

such that

Tr pe(0p) = 7(p), det py(o,) = p'.

By considering the “reduction mod ¢’ map, we obtain an extension K;/Q

which is Galois and
Tr pe(0,) = 7(p)( mod ).

Therefore, primes p for which ¢|7(p) satisfy a Chebotarev condition. The
corresponding /3 can be calculated from the image of Galois in GLy(F,). See
[Se| for further details.

An equally striking result is that for algebraic number fields K of finite
degree over Q, the Dedekind zeta function

o0

Z_”

’I'L

Cx(s) =

a



has the property that for almost all n, a, = 0 whenever [K : Q] > 1. This
is a generalization of the result cited above involving numbers that can be
written as the sum of two squares, where in that case K = Q(i). To see
this, let A(z) be the number of n < z such that n = N(a) has a solution.
Let A*(z) be the number of such n which are squarefree. Since any natural
number n can be written uniquely as n = uv, with (u,v) = 1, v squarefull
and u squarefree, we see that

A(z) =) A*(z/v).

v<z

This sum can be split into two parts, the first being those with v < z and
the second with z < v < z. Using the trivial estimate of z/v for A*(z/v)
in the second sum and applying the remark made at the end of the previous
section, we find

A*(z)v) < =
ZSVZ@ (z/v) 7z
If we choose z = logx, we find that the contribution from the second sum is
o(z) and hence negligible. Now if n is squarefree, a necessary condition for the
equation n = N(a) to have a solution is that a is composed of prime ideals of
degree 1 over Q. That is, n must be divisible by primes p which have a degree
one prime ideal lying above it in K. This is clearly a set of primes satisfying
a Chebotarev condition. We can make this more precise. If K denotes the
Galois closure of K over Q, and H is the subgroup of G = Gal(K/Q) that
fixes K, then p has a first degree prime ideal in K lying above it if and only
if o,(K/Q) belongs to some conjugate of H. If we let

D= UgEG gHg_1

then D is stable under conjugation and we may apply Theorem 1 with a =
1 — g with g = |D|/|G|. Tt is an elementary exercise in group theory that
0 < B < 1. Indeed, each of the distinct conjugates have the identity element
in common and therefore,

ID| <1+ (H|-1)[G:H|=|G|-[G:H]+1< |G|

if [G : H] > 1 which is the same as saying K # Q. By our previous remarks,

we deduce
(G4

A* (m) ~ 7(10g .’E)l_ﬁ ;
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Inserting this estimate above in the first sum to be considered, we find

1) <Y i

11<25

log:L'
Since the sum
>
= v
converges, we find that the total estimate is o(z), as desired.

The above situation is a special case of a more general phenomenon in-
volving Artin L-series. If

Lis,x) = > =%

is an Artin L-function attached to a Galois extension of Q, such that the set S
of elements g belonging to the Galois group with x(g) = 0 is non-empty, then
almost all of the coefficients a, vanish. The argument to prove this proceeds
as above. By the Chebotarev density theorem, the set P of primes p whose
Artin symbol belongs to S has a positive density and hence is Chebotarev.
We can proceed as above and deduce that the number of n < x such that

a, # 0 is
T
N ((m@ﬁ)

By taking the permutation representation attached to a subgroup H of
the Galois group, we see that the Artin L-function is the Dedekind zeta
function of the fixed field of H. Indeed, if V is the C-vector space with basis
{eg,m}, indexed by the cosets of H, the permutation representation rg/g of
G attached to the cosets of H is given by the action g-eg g = €49, for g € G.
It is now straightforward to calculate the character of this representation and
we see it is induced from the trivial representation of the subgroup H (see
[S, p. 29]). By the invariance of Artin L-series under induction, it follows
that the Artin L-series attached to x = tr rg/ g is equal to the Dedekind zeta
function of the fixed field of H. The condition on x, namely that the set
of elements g such that x(g) = 0, is satisfied provided that H is a proper
subgroup of the Galois group. In this way, we can retrieve the earlier result
about the vanishing of the coefficients of the Dedekind zeta function.

for some § > 0.



If x is an irreducible character of the Galois group, then it is a classical
result of Burnside (see Isaacs [Is, p. 40]) that there exist elements g such
that x(¢g) = 0 whenever x(1) > 1. The proof of this fact is not difficult. For
the sake of completeness, we sketch it here. The first step is to show that if
G is a finite cyclic group, and S is the set of elements that generate GG, then
for any character (possibly reducible) of G, we have

> Ix(9)* > 18],

seS

whenever x(s) # 0 for all s € S. Indeed, the product

1T Ix(s)P?

seS

is an element of the cyclotomic field Q((,), where n = |G| and it is invariant
under the action of the Galois group of Q((,)/Q. Since the product is non-
zero, it must be > 1. The result follows by applying the arithmetic-geometric
mean inequality. If now, x is an irreducible character of a group G with
x(1) > 1, the second step is to partition G into equivalence classes of elements
that generate the same cyclic subgroup. If x(g) # 0 for all g € G, then for
each equivalence class S, we have by the above

> Ix(s) > 18],

SES

Summing this over all equivalence classes of non-identity elements gives

> Ix(g)f > |G| - 1.
g#1

But as x is irreducible, we have

Gl =" Ix(9)) > |G| — 14 x(1)?,

geG

which is a contradiction if x(1) > 1.

4. The sieve of Eratosthenes.

The classical method of Eratosthenes allows us to deduce a crude estimate
for the sum function in Theorem 1, which is useful in many instances when,
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for example, the hypothesis of Theorem 1 are not satisfied. If we let P(z) to
be the product of the primes p € P, with p < z, then the usual inclusion-
exclusion principle gives the upper bound

(1) nzszan = dpz(z w(d < xpg; (1 - —) + 0(2%).

d
This simple inequality allows us to prove:

Theorem 2. Suppose that

1
Y = >aloglogz+ O(1).

p<z,pEP

Then,

D an .

e log log x)®

Proof. We apply the elementary inequality 1 — ¢ < e~ to the product in
(1) to deduce

1
oa,<zexp|— > —|+0(2).
n<z p<z,peEP p

Choosing z = clogz, with c sufficiently small, gives the result. "

As indicated in [MS], Theorem 2 can be sharpened by observing that in
the sum in (1), we have the condition that d < z. If we denote by G(z, 2)
the number of n < z all of whose prime factors are < z and belong to P,
then, the estimate (1) can be written as

(2) dag<z Y @ + O(G(z, 2)).

n<z d[P(2) d<w

When P is the set of all prime numbers, the function G(z, z) has been well
studied in sieve theory and precise information about its behaviour exists.
For our purposes however, we can derive an elementary estimate following
Rankin (see [M, p. 130]) in our slightly general context.

10



Lemma 3. Suppose that

> logp < alogz + O(1).

P<z,pEP
Then,

logz
| @ — .
G(z, z) < z(log 2)* exp ( logz>

Proof. For any § > 0, we clearly have
5
G <Y (2)
n<lz n

where the dash on the summation indicates that p|n implies p < z,p € P.
Writing § = 1 — 7, and using the inequality e’ < 1 + te!, we obtain

! I
G(z,2) < zexp (—nlogx+ S+ N 0gp>_

p<z,pEP p<z,pEP p

By partial summation

1
Y = <aloglogz+ 0O(1).

p<z,pEP

Inserting this estimate as well as the estimate in the hypothesis, we obtain
G(z,z) < zexp(—nlogz + aloglog z + nz"(alog z + O(1))) .
We choose n =1/log z to obtain

logz
1 @ — .
G(z, z) < z(log 2)* exp ( logz>

This completes the proof. "

Lemma 3 allows us to insert a very good estimate for the error term in

(2). However, it remains to consider the main term. This is handled as in
[MS]. Clearly,

pld) _  pld) p(d)
y td-sied. 5 29

d|P(z),d<z d|P(z) d|P(z),d>z
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We estimate the latter sum in the following lemma.

Lemma 4. If |
Z 08P < alogz+ 0(1),

p<z,pEP
then,

1 |
> o< (log 2)*** exp (— ng) .

dP(2),d>z log 2

Proof. Clearly, the sum in question is by partial summation,

© G(t, 2)
< [FTg

and inserting the estimate from Lemma 3, and changing variables, we are
reduced to estimating

(log z)'*@ /oo e "du.

The integral is estimated as

log x
< exp _logz ’

which implies the result. "

We can combine both of these lemmas and deduce:

Theorem 5. Suppose that

logp

Y —=<alogz+0(1).
p<z,pEP
Then,
1 log x
(3) an =T (1 - —) +0 (m(log 2)*texp (— )) :
% psgep p log 2
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Corollary 6. If in addition, we have

1
> %8P _ alogz + O(1),

p<z,pEP
then .
loglog z
zan@(ﬁ) |
et log x

Proof. By partial summation, the hypothesis implies

1
Y = =aloglogz+ O(1).

p<z,pEP p

As explained before, inserting this fact into the main term gives us an esti-

mate of
T

(log 2)“

for the term involving the product in (3). If we choose

for a sufficiently large constant A, we immediately obtain the result. "

It is possible to get a slightly better result than this with a sharper choice
of z. The improvement is only marginal and any effort in that direction
seems to destroy the elementary nature of the derivation. (See the remark
on p. 1110 in [MS].)

References

[D]  P. Deligne, Formes modulaires et représentations ¢-adiques, Séminaire
Bourbaki, 1968 /69, exposé 355, p. 139-172. - Berlin, Springer - Verlag,
1971 (Lecture Notes in Mathematics, 179).

[Is] M. Isaacs, Character Theory of Finite Groups, 1976, Dover.

13



[M] M. Ram Murty, Problems in Analytic Number Theory, GTM/RIM,
Vol 206, Springer-Verlag, 2001.

[MS] M. Ram Murty and N. Saradha, On the sieve of Eratosthenes, Cana-
dian Journal of Mathematics, 39 (1987), 1107-1122.

[Se] J.-P. Serre, Divisibilité de certaines fonctions arithmétiques,
L’Enseignement Math., 22 (1976), 227-260.

[S] J.-P. Serre, Linear representations of Finite Groups, Graduate Texts
in Mathematics, Vol. 42, Springer-Verlag, 1977.

M. Ram Murty,

Department of Mathematics,
Queen’s University,
Kingston, Ontario,

K7L 3N6, Canada
murty@mast.queensu.ca

14



