
A SMOOTH SELBERG SIEVE AND APPLICATIONS

M. RAM MURTY AND AKSHAA VATWANI

ABSTRACT. We introduce a new technique for sieving over smooth moduli in the higher
rank Selberg sieve and obtain asymptotic formulas for the same.

1. INTRODUCTION

The Bombieri-Vinogradov theorem establishes that the primes have a level of distribu-
tion θ for any θ < 1/2. More precisely, letting π(x) denote the number of primes upto x,
we put for (a, q) = 1,

(1.1) EP(x, q, a) =
∑
n≤x

n≡a (mod q)

χP(n)− π(x)

φ(q)
,

where χP is the characteristic function of the primes. Then, the primes are said to have a
level of distribution θ if for any A > 0, we have

(1.2)
∑
q≤xθ

max
(a,q)=1

| EP(x, q, a) |� x

(log x)A
.

The chief innovation of Zhang [25] is the extension of the level of distribution of the
primes to beyond θ = 1/2, albeit in a weaker sense by restricting the moduli to be
smooth or free of large prime factors. It is this breakthrough, combined with the clas-
sical GPY approach using the Selberg sieve that enabled him to obtain his spectacular
result on bounded gaps between primes in May 2013. Collaborative efforts of a num-
ber of mathematicians [18] succeeded in improving the level of distribution in Zhang’s
equidistribution result from θ = 1

2
+ 1

584
to θ = 1

2
+ 7

300
. More precisely, the following was

proved. Let P+(q) denote the largest prime factor of q. Then, for any $, ξ ≥ 0 satisfying
600$ + 180ξ < 7, and any A > 0, we have

(1.3)
∑
q≤xΘ

P+(q)<xξ

max
(a,q)=1

| EP(x, q, a) |� x

(log x)A
,

where Θ = 1
2

+ 2$. Applying this improved result to Zhang’s work, along with sophis-
ticated numerical techniques, the bound for gaps between primes was reduced from 70
million in [25] to 14950 in [18].

In October 2013, Maynard [13] and Tao [19] independently applied the higher rank
Selberg sieve to the problem of bounded gaps, thereby obtaining bounded gaps between
primes for any positive level of distribution. They also obtained better numerical values.
The natural next step in this sequence of ideas is to combine the new equidistribution
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estimate (1.3) with the higher rank Selberg sieve. This has been done in [19], employing
efficient numerical methods and extensive computations to reduce the bound still further
to 246.

Recently, the authors ([17], [16] gave an axiomatic formulation of the higher rank sieve
as a general method, along with applications. This work allows one to see clearly the un-
derlying structure of the sieve and motivates a more general way to incorporate smooth-
ing into the higher rank Selberg sieve. In [19], the moduli are constrained to be free of
large prime factors by truncating the support of the function F appearing in (3.2). Our
method imposes smoothing as an explicit condition and leads to expressions involving
the Dickman and Buchstab functions (cf. Section 4) as would be expected. The general
theory of the same forms the crux of this paper. In forthcoming work, we will discuss
applications of this theory.

2. NOTATION

We will continue with the notation used in [17]. We include the same briefly here for the
sake of completeness. We denote the k-tuple of integers (d1, . . . , dk) by d. A tuple is said
to be square-free if the product of its components is square-free. For R ∈ R, the inequality
d ≤ R means that

∏
i di ≤ R. The notions of divisibility and congruence among tuples are

defined component-wise. Divisibility relations between a tuple and a scalar are defined
in terms of the product of the components of the tuple. For example,

q|d⇐⇒ q|
∏
i

di.

We define the multiplicative vector function f(d) as the product of its component (multi-
plicative) functions acting on the corresponding components of the tuple, that is,

f(d) =
k∏
i=1

fi(di).

We use [·, ·] and (·, ·) to denote lcm and gcd respectively. In the case of tuples, this means
the product of the lcms (or gcds) of the corresponding components. We employ the fol-
lowing multi-index notation to denote mixed derivatives of a function on k-tuples, F(t).

(2.1) F (α)(t) :=
∂αF(t1, . . . , tk)

(∂t1)α1 . . . (∂tk)αk
,

for any k-tuple α with α :=
∑k

j=1 αj .
Let P+(q) denote the largest prime factor of q. Then q is said to be m-smooth if P+(q) <

m. For a tuple d, P+(d) denotes the largest prime factor dividing any of the components
of d. We use the convention n ∼ N to meanN ≤ n < 2N . In practice we haveN →∞. We
fix D0 = log log logN and let W =

∏
p<D0

p. Then W ∼ log logN (1+o(1)) by an application
of the prime number theorem. Let ω(n) denote the number of distinct prime factors of n.
The greatest integer less than or equal to x is denoted as bxc. Throughout this paper, δ
denotes a positive quantity which can be made as small as needed.
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3. THE HIGHER RANK SELBERG SIEVE

In this section, we recall the salient features of the higher rank Selberg sieve discussed
in [17]. The exposition given here is concise for the sake of brevity and the reader is
encouraged to peruse Section 3.2 of the above mentioned paper.

Given a set S of k-tuples (not necessarily finite),

S = {n = (n1, . . . , nk)},
in [17], we undertook a systematic study of sums of the form

(3.1)
∑
n∈S

wn

(∑
d|n

λd

)2

,

satisfying certain hypotheses. Here wn is a ‘weight’ attached to the tuples n and λd’s are
sieve parameters chosen in terms of a fixed positive real number R and a smooth real
valued test function F supported on the simplex

∆k(1) := {(t1, . . . , tk) ∈ [0,∞)k : t1 + . . .+ tk ≤ 1}.
More precisely, we chose :

(3.2) λd = µ(d)F
(

log d1

logR
, . . . ,

log dk
logR

)
.

The sum (3.1) was assumed to satisfy the following hypotheses.
H1. If a prime p divides a tuple n such that p divides ni and nj , with i 6= j, then p must lie

in some fixed finite set of primes P0.
This allows us to perform the ’W trick’, that is restrict n in the above sum to be congruent
to a residue class b (mod W ) such that (bi,W ) = 1 for all i.
H2. The function wn satisfies ∑

d|n
n≡b (mod W )

wn =
X

f(d)
+ rd,

for some multiplicative function f and some quantity X depending on the set S.
H3. The components of f satisfy

fj(p) =
p

αj
+O(pt), with t < 1

for some fixed αj ∈ N.

We denote the tuple (α1, . . . , αk) as α and the sum of the components
∑k

j=1 αj as α.
H4. There exists θ > 0 and Y � X such that∑

[d,e]<Y θ

|r[d,e]| �
Y

(log Y )A

for any A > 0.
With all this in place, we state below the main results of the higher rank sieve obtained in
[17].
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Lemma 3.1. Set R to be some fixed power of X . Let f be a multiplicative function satisfying H3
and

G,H : [0,∞)k → R
be smooth functions with compact support. We denote

G
(

log d

logR

)
:= G

(
log d1

logR
, · · · , log dk

logR

)
and similarly for H. Let the dash over the sum mean that we sum over k-tuples d and e
with [d, e] square-free and co-prime to W . Then,∑′

d,e

µ(d)µ(e)

f([d, e])
G
(

log d

logR

)
H
(

log e

logR

)
= (1 + o(1))C(G,H)(α) c(W )

(logR)α
,

where

C(G,H)(α) =

∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

t
αj−1
j

(αj − 1)!

)
G(t)(α)H(t)(α)dt,

with G(t)(α) andH(t)(α) as in the notation of (2.1). Furthermore,

c(W ) :=
∏
p|W

pα

φ(p)α
.

Theorem 3.2. Let λd’s be as chosen above. Suppose hypotheses H1 to H3 hold and H4 holds with
Y = X . Set R = Xθ/2−δ for small δ > 0. Then,∑

n≡b (mod W )

wn

(∑
d|n

λd

)2

= (1 + o(1))C(F ,F)(α)c(W )
X

(logR)α
,

with

c(W ) :=
Wα

φ(W )α

and

C(F ,F)(α) =

∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

t
αj−1
j

(αj − 1)!

)(
F (α)(t)

)2
dt

4. A REFINED SMOOTHING PROCEDURE

In the axiomatization of the higher rank Selberg sieve discussed in Section 3, it may be
that the hypothesis H4 holds for θ in a range that is too restrictive to yield good asymp-
totic formulas. Motivated by estimates of the type (1.3), we would like to consider the
following more relaxed condition on the error term instead of hypothesis H4:
H4∗ There exists Θ > 0, 0 < ξ ≤ 1 and Y � X such that∑

[d,e]<Y Θ

P+([d,e])<Y ξΘ/2

|r[d,e]| �
Y

(log Y )A

for any A > 0.
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Accordingly, we now consider the sum (3.1) with additional smoothing conditions im-
posed. Let R1 = XΘ/2−δ. We will replace R in (3.2) by R1. The above setting motivates
the analysis of smooth sums of the kind∑

d,e<R1

λdλe
f [d, e]

,

and hence a smooth version of the sum considered in Lemma 3.1 must be studied. We do
so by emulating the Fourier analytic method adopted in [17], incorporating the smooth-
ing conditions that arise by use of the partial zeta function as well as the Dickman and
Buchstab functions.

The Dickman function ρ is defined recursively by the initial condition ρ(u) = 1, (0 ≤
u ≤ 1) and the equation

ρ(u) = ρ(v)−
∫ u

v

ρ(t− 1)
dt

t
, (v ≤ u ≤ v + 1).

The Buchstab function ω is defined similarly, by the initial condition uω(u) := 1, (1 ≤ u ≤
2) and the relation

uω(u) = 1 +

∫ u−1

1

ω(v)dv, (u > 2).

These functions have a long and venerable history. Though Dickman’s paper [5] where he
introduced the function, was published in 1930, it seems that Ramanujan (unpublished)
had studied it more than a decade earlier (see p. 337 of [20]). Indeed, Ramanujan writes
down the following explicit formula for the Dickman function ρ(u). Put I0 = 1 and define
(for k ≥ 1) recursively

Ik(u) =

∫
· · ·
∫

t1,...,tk≤1
t1+...+tk≤u

dt1 . . . dtk
t1 . . . tk

.

Then,

ρ(u) =
∞∑
k=0

(−1)k

k!
Ik(u).

The study of ρ(u) became dormant for almost two decades until 1947, when Chowla and
Vijayaraghavan studied it unaware of any earlier work (see [3]). Two years later, Buchstab
[2] studied the same function (again unaware of any earlier work). It was de Bruijn [4],
in 1951, who began exhaustive research into the nature of this function and obtained
an asymptotic expansion for it. In 1980, Hildebrand and Tenenbaum [23, 24] extended
considerably the range of applicability of de Bruijn’s formulas. We refer the reader to the
excellent survey of Moree [14] for further details.

We state some results which will be useful in our analysis. These are from [23], after
minor changes in notation.

Proposition 4.1. (p. 379 of [23]) For the partial zeta function, defined as

ζy(s) :=
∏
p<y

(
1− 1

ps

)−1

,
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we have,
ζy(s) = ζ(s)e−J((s−1) log y)

(
1 +O(Lε(y)−1)

)
,

where

J(s) =

∫ ∞
0

e−s−t

s+ t
dt

and
Lε(y) = exp{(log y)3/5−ε}.

Proposition 4.2. (Theorem 7, p. 372 of [23]) Let ρ be the Dickman function and ρ̂ be the Laplace
transform of ρ defined as

ρ̂(s) =

∫ ∞
0

e−stρ(t)dt.

Then,
sρ̂(s) = e−J(s).

We use the notation ω+ := δ + ω, where δ is the Dirac delta function. Then ω̂+(s) =
1 + ω̂(s), in the distributional sense.

Proposition 4.3. (Theorem 5, p. 404 of [23]) Let ω denote the Buchstab function and ω̂ be its
Laplace transform given by

ω̂(s) =

∫ ∞
0

e−suω(u)du.

Then,

sω̂+(s) =
1

ρ̂(s)
.

Henceforth, ξ is a fixed number, 0 < ξ ≤ 1. We also recall the following notation which
will be widely used. If g is a vector function, that is, g(t) is defined as

∏
j gj(tj), we use

the notation g(t)α to denote the product
∏

j gj(tj)
αj . It is clear that

ω+(t) :=
∏
j

ω+(tj) =
∏
j

(ω(tj) + δ(tj)).

We prove some results towards obtaining a smooth version of Lemma 3.1. These will play
an important role in subsequent discussion.

Lemma 4.4. Let f be a multiplicative function satisfying H3 with respect to the tuple α =
(α1, . . . , αk). Let G, H be smooth functions with compact support as in Lemma 3.1. We retain all
the notation used in Lemma 3.1. Then the Rξ

1- smooth sum∑′

d,e

P+([d,e])<Rξ1

µ(d)µ(e)

f([d, e])
G
(

log d

logR1

)
H
(

log e

logR1

)
.

is asymptotic (as R1 →∞) to

(1 + o(1))
c(W )

(logR1)α
ξαCG,H(ξ)(α),
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where CG,H(ξ)(α) is the integral

(4.1)
∫
Rk

∫
Rk
ηG(u)ηH(v)(1 + iu)α(1 + iv)αΥ(u, v)(α,α,α)dudv,

with

Υ(u, v)(α,α,α) = ω̂+((1 + iu)ξ)α ω̂+((1 + iv)ξ)α ρ̂((2 + iu+ iv)ξ)α,

ηG(u) =

∫
Rk
G(t) exp(t) exp(iu · t)dt, ηH(v) =

∫
Rk
G(t) exp(t) exp(iv · t)dt,

where exp(t) =
∏k

j=1 e
tj and the dot denotes the usual dot product of tuples.

Proof. Let y = Rξ
1. As the required sum is the same as the one considered in Lemma 3.1

with an additional smoothing condition imposed, we will follow the proof of the afore-
said lemma given in [17], with details to highlight any modifications. All references to
[17] in this proof are understood to refer to the relevant steps in the proof of Lemma 3.1
in that paper.

Using Fourier inversion as in [17], this sum is given by the integral

(4.2)
∫
Rk

∫
Rk
ηG(u)ηH(v)Zy(u, v)dudv,

where Zy(u, v) is now Z(u, v) of [17] along with a smoothing condition, that is,

Zy(u, v) =
∑′

d,e
P+([d,e])<y

µ(d)µ(e)

f([d, e])

1

d(1+iu)/ logR1

1

e(1+iv)/ logR1

Again, we can write an Euler product for Zy(u, v), as in [17], but it will run only over
primes D0 < p < y, as opposed to the Euler product that we had in [17] over primes
greater than D0. This is because, the dash over the sum constrains [d, e] to be co-prime to
W and the smoothing condition means that its prime factors must be below y. Hence, the
Euler product for Zy(u, v) is given by

∏
p-W,p<y

(
1−

k∑
j=1

1

fj(p)

(
1

p
1+iuj
logR1

+
1

p
1+ivj
logR1

− 1

p
1+iuj
logR1

+
1+ivj
logR1

))
.

After applying H3 to retrieve the behavior of fj(p) for each component 1 ≤ j ≤ k, some
algebraic manipulation along the lines in [17] gives us the following convenient approxi-
mation

(4.3) Zy(u, v) = (1 + o(1))
k∏
j=1

∏
D0<p<y

(
1− αjp−1−

1+iuj
logR1

)(
1− αjp−1−

1+ivj
logR1

)
1− αj p−1−

2+iuj+ivj
logR1 .

This leads us to examine for each j, Euler products of the form

(4.4)
∏

D0<p<y

(
1− αj

p1+sj

)
,
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with Re(sj) > 0. We write the above Euler product as

∏
D0<p<y

(
1− αj

p1+sj

)(
1− 1

p1+sj

)−αj (
1− 1

p1+sj

)αj
= Dj(1 + sj)

∏
D0<p<y

(
1− 1

p1+sj

)αj
,

where

Dj(s) =
∏

D0<p<y

(
1− αj

ps

)(
1− 1

ps

)−αj
is an Euler product supported on primes D0 < p < y and analytic for Re(s) > 0. For
Re(s) ≥ 1, we have

Dj(s) = 1 +O
( ∑
D0<p<y

p−2
)
,

showing that Dj(s) = 1 + o(1) as R1 (and hence y as well as D0) goes to∞. Proceeding as
in [17], we obtain

∏
D0<p<y

(
1− αj

p1+sj

)
= (1 + o(1))

∏
p|W

(
1− 1

p1+sj

)−αj
ζy (1 + sj)

−αj .

Fix some small ε > 0. As done in [17], it is possible to show that the main contribution to
(4.2) comes from the region |u|, |v| < (logR)ε. Hence, we would like to analyze ζy(1 + sj)
as sj → 0. Combining Propositions 4.1 and 4.2, we obtain as sj → 0+ and y →∞,

ζy(1 + sj) = (sj log y)ζ(1 + sj)ρ̂ (sj log y) (1 +O(Lε(y)−1))

= (1 + o(1))(sj log y)ζ(1 + sj)ρ̂ (sj log y)

= (1 + o(1))(log y)ρ̂ (sj log y) ,

where we have used the asymptotic ζ(1+s) = (1+o(1))s−1 as s→ 0+ for the last equality.
Thus we obtain as sj → 0+,

∏
D0<p<y

(
1− αj

p1+sj

)
= (1 + o(1))

Wαj

φ(W )αj
(log y)−αj ρ̂ (sj log y)−αj

Applying this to each term appearing in (4.3), recalling that ξ is defined as log y/ logR1

and α :=
∑k

j=1 αj , we have in the region |u|, |v| < (logR)ε,

Zy(u, v) = (1 + o(1))
Wα

φ(W )α
(log y)−α

k∏
j=1

ρ̂((1 + iuj)ξ)
−αj ρ̂((1 + ivj)ξ)

−αj

ρ̂((2 + uj + vj)ξ)−αj
,
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as R→∞. To get rid of the denominator in the above expression, we use Proposition 4.3.
This gives

Zy(u, v) = (1 + o(1))
Wα

φ(W )α
ξ2α

(log y)α

k∏
j=1

(1 + iuj)
αj(1 + ivj)

αj

k∏
j=1

ω̂+((1 + iuj)ξ)
αj ω̂+((1 + ivj)ξ)

αj ρ̂((2 + iuj + ivj)ξ)
αj

As ξ = (log y)/(logR1), we obtain

Zy(u, v) = (1 + o(1))c(W )
ξα

(logR1)α
(1 + iu)α(1 + iv)αΥ(u, v)(α,α,α),(4.5)

with notation as in the statement of this lemma. Plugging this into the integral expression
(4.2) for the required sum yields the result. �

In order to simplify the integral CG,H(ξ)(α) appearing in Lemma 4.4, we first consider
the special case α = 1 = (1, . . . , 1). We have the following result.

Lemma 4.5. The integral

CG,H(ξ)(1) =

∫
Rk

∫
Rk
ηG(u)ηH(v)(1 + iu)(1 + iv)Υ(u, v)(1,1,1)dudv

is given by ∫
Rk
ρ(t)

∫
Rk

∫
Rk
ω+(s− t)ω+(r − t)G(1)(ξr)H(1)(ξs)drdsdt,

which can be further simplified by writing each ω+(x) as the product∏
j

(ω(xj) + δ(xj))

and expanding the resulting expression. (Here, we use the multi-index notation (2.1) for G(1)(u)
andH(1)(u).)

Proof. We have

Υ(u, v)(1,1,1) = ω̂+((1 + iu)ξ) ω̂+((1 + iv)ξ) ρ̂((2 + iu+ iv)ξ).

Then, the interpretation of the vector notation and the definition of the Laplace transform
give us

ω̂+((1 + iu)ξ) =
k∏
j=1

ω̂+((1 + iuj)ξ) =
k∏
j=1

∫
R
ω+(rj)e

−ξ(1+iuj)rjdrj

=

∫
Rk
ω+(r)e−ξ(1+iu)·rdr,
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where the dot denotes dot product of the tuples ξ(1 + iu) and r and ω+(r) :=
∏k

j=1 ω
+(rj).

Similarly, we obtain

ω̂+((1 + iv)ξ) =

∫
Rk
ω+(s)e−ξ(1+iv)·sds,

ρ̂((2 + iu+ iv)ξ) =

∫
Rk
ρ(t)e−ξ(2+iu+iv)·tdt.

Thus, Υ(u, v)(1,1,1) equals∫
Rk

∫
Rk

∫
Rk
ρ(t)ω+(s)ω+(r)e−ξ(1+iu)·(t+r)e−ξ(1+iv)·(t+s)drdsdt.

Plugging this into the required integral gives

CG,H(ξ)(1) =

∫
Rk

∫
Rk

∫
Rk
ρ(t)ω+(s)ω+(r)IGIHdrdsdt,

with

IG(ξ(t+ r)) =

∫
Rk
ηG(u)(1 + iu)e−ξ(1+iu)·(t+r)du

IH(ξ(t+ s)) =

∫
Rk
ηH(v)(1 + iv)e−ξ(1+iv)·(t+s)dv.

By Fourier inversion, we have the identities

G(x) =
∫
Rk ηG(u) exp (−(1 + iu) · x) du(4.6)

H(x) =
∫
Rk ηH(v) exp (−(1 + iv) · x) dv.

It is clear from this that IG(ξ(t+ r)) is nothing but

(−1)k
∂kG(x)

∂x1 . . . ∂xk

∣∣∣∣
x=ξ(t+r),

that is, (−1)kG(1)(ξ(t+r)) in our notation. Repeating this argument forH, we have IH(ξ(t+
s)) = (−1)kH(1)(ξ(t+ s)). Thus, the required integral CG,H(ξ)(1) is given by∫

Rk

∫
Rk

∫
Rk
ρ(t)ω+(s)ω+(r)G(1)(ξ(t+ r))H(1)(ξ(t+ s))drdsdt(4.7)

=

∫
Rk
ρ(t)

∫
Rk

∫
Rk
ω+(s)ω+(r)G(1)(ξ(t+ r))H(1)(ξ(t+ s))drdsdt

=

∫
Rk
ρ(t)

∫
Rk

∫
Rk
ω+(s− t)ω+(r − t)G(1)(ξr)H(1)(ξs)drdsdt,

after suitable change of the variables r and s. �

Let α, β, a, b and c be k-tuples. We now consider the general integral CG,H(ξ)(α,β,a,b,c),
defined as

(4.8)
∫
Rk

∫
Rk
ηG(u)ηH(v)(1 + iu)α(1 + iv)βΥ(u, v)(a,b,c)dudv,

with
Υ(u, v)(a,b,c) = ω̂+((1 + iu)ξ)a ω̂+((1 + iv)ξ)b ρ̂((2 + iu+ iv)ξ)c.
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Note that when all the tuples involved are the same, say α, then we will use the notation
CG,H(ξ)(α) for convenience. We now emulate the proof of the above lemma for this general
case.

Lemma 4.6. The integral CG,H(ξ)(α,β,a,b,c) is given by

(−1)α+β

∫
Rk
ρc(t)

∫
Rk

∫
Rk
ω+
a (s− t)ω+

b (r − t)G(α)(ξr)H(β)(ξs)drdsdt,

where ρc, ω+
a and ω+

b are defined as follows. Let ∗ denote the convolution operator. Then,

ρc(t) := ρ∗c(t) =
k∏
j=1

ρ(tj)
∗cj

=
k∏
j=1

ρ(tj) ∗ . . . ∗ ρ(tj)︸ ︷︷ ︸
cj times

.

Similarly,

ω+
a (r) :=

k∏
j=1

ω+(rj)
∗aj =

k∏
j=1

ω+(rj) ∗ . . . ∗ ω+(rj)︸ ︷︷ ︸
aj times

=
k∏
j=1

(δ + ω(tj)) ∗ . . . ∗ (δ + ω(tj))︸ ︷︷ ︸
aj times

.

The definition of ω+
b is exactly the same. As before, we use the multi-index notation (2.1) for

G(α)(u) andH(β)(u).

Proof. We have

ω̂+((1 + iu)ξ)a =
k∏
j=1

ω̂+((1 + iuj)ξ)
aj

Then for each j, ω̂+((1 + iuj)ξ)
aj is the Laplace transform evaluated at (1 + iuj)ξ, of the

convolution product
ω+(rj)

∗aj = ω+(rj) ∗ . . . ∗ ω+(rj),

where ω+ is convolved aj times. Thus,

ω̂+((1 + iuj)ξ)
aj =

∫
R
ω+(rj)

∗aje−ξ(1+iuj)rjdrj

Reverting to the vector notation gives us

ω̂+((1 + iu)ξ)a =

∫
Rk
ω+
a (r)e−ξ(1+iu)·rdr,

where ω+
a is as defined in the lemma. Proceeding similarly, we obtain

ω̂+((1 + iv)ξ)b =

∫
Rk
ω+
b (s)e−ξ(1+iv)·sds,

ρ̂((2 + iu+ iv)ξ)c =

∫
Rk
ρc(t)e

−ξ(2+iu+iv)·tdt.
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We now proceed exactly as in the proof of the previous lemma with ω+(r), ω+(s), ρ(t)
replaced by ω+

a (r), ω+
b (s), ρc(t) respectively to obtain that Υ(u, v)(a,b,c) is given by∫

Rk

∫
Rk

∫
Rk
ρc(t)ω

+
b (s)ω+

a (r)e−ξ(1+iu)·(t+r)e−ξ(1+iv)·(t+s)drdsdt.(4.9)

Thus, we obtain that the required integral is∫
Rk

∫
Rk

∫
Rk
ρc(t)ω

+
b (s)ω+

a (r)I
(α)
G I

(β)

H drdsdt,

with

I
(α)
G =

∫
Rk
ηG(u)(1 + iu)αe−ξ(1+iu)·(t+r)du

I
(β)

H =

∫
Rk
ηH(v)(1 + iv)βe−ξ(1+iv)·(t+s)dv.

As before, we use the identities (4.6) and change of variable to obtain the desired result.
�

4.1. A smooth higher rank sieve. We work with the setting of the sieve established in
Section 3. Recall the hypotheses H1 to H3 in this section. Instead of H4 we will assume
hypothesis H4∗ on the error terms. Our main result is then the following smooth version
of Theorem 3.2 of [17], which can be thought of as the ξ-smooth higher rank sieve.

Theorem 4.7. With λd’s chosen as in (3.2), hypotheses H1, H2, H3, H4∗ and R1 = XΘ/2−δ, we
have ∑

n∈S
n≡b (mod W )

wn

( ∑
d|n

P+(d)<Rξ1

λd

)2

= (1 + o(1))c(W )ξαCF ,F(ξ)(α) X

(logR1)α
,

with

c(W ) =
Wα

φ(W )α

and CF ,F(ξ)(α) obtained from the expression in Lemma 4.6 by plugging in β, a, b, c = α.

Proof. Expanding out the square, interchanging the order of summation gives us

∑
n≡b (mod W )

wn

( ∑
d|n

P+(d)<Rξ1

λd

)2

=
∑
d,e<R1

P+([d,e])<Rξ1

λdλe

( ∑
[d,e]|n

n≡b (mod W )

wn

)

Now one can argue exactly as in Theorem 3.2 of [17], using H1 and the W -trick to impose
the same restrictions on the tuples d, e. Moreover, H2 along with the choice of λd’s gives
that the main term for the desired sum is

X
∑′

d,e

P+([d,e])<Rξ1

µ(d)µ(e)

f([d, e])
F
(

log d

logR1

)
F
(

log e

logR1

)
.
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As H3 holds, one can apply Lemma 4.4 to this sum, to obtain the asymptotic

(1 + o(1))c(W )ξαCF ,F(ξ)(α,α,α) X

(logR1)α
.

asX (and henceR1) goes to infinity. As the choice of λd’s (see (3.2)) in terms of the smooth
compactly supported function F means that they are bounded absolutely, the error term
is given by

(4.10) O

( ∑
d,e<R1

P+([d,e])<Rξ1

|r[d,e]|

)

and can be neglected due to the choice of R1, after applying H4∗. �

5. APPLICATION TO BOUNDED GAPS BETWEEN PRIMES

In this section, we apply the sieve with the smoothing procedure discussed above to
the well-known prime k-tuples problem. A set H of distinct non-negative integers is
said to be admissible if for every prime p, there is a residue class bp (mod p) such that
bp /∈ H (mod p). That is |H (mod p)| < p, for every prime p. We will work with a fixed
admissible k-tuple

H = {h1, . . . , hk}.
We use the ‘W trick’ to remove the effect of small primes, that is we restrict n to be in
a fixed residue class b modulo W , where W =

∏
p<D0

p and b is chosen so that b + hi is
co-prime to W for each hi. This choice of b is possible because of admissibility of the set
H . One can choose D0 = log log logN , so that W ∼ (log logN)1+o(1) by an application of
the prime number theorem, as noted earlier.

Recall that χP denotes the characteristic function of the primes. Consider the expres-
sions

S1 =
∑
n∼N

n≡b (mod W )

an

and

S2 =
∑
n∼N

n≡b (mod W )

(
k∑

m=1

χP(n+ hm)

)
an,

where an are non-negative parameters.
For ρ positive, we denote by S(N, ρ) the quantity

(5.1) S2 − ρS1 =
∑
n∼N

n≡b (mod W )

(
k∑
j=1

χP(n+ hj)− ρ

)
an.

The key idea then used is as follows. We state it as a proposition for convenient future
reference.

Proposition 5.1. Given a positive number ρ, if

S(N, ρ) > 0
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for all largeN , then there are infinitely many integers n such that at least bρc+1 of n+h1, . . . , n+
hk are primes.

Proof. The definition of S(N, ρ) gives that the sum∑
n∼N

n≡b (mod W )

(
k∑
j=1

χP(n+ hj)− ρ

)
an > 0.

As an are non-negative parameters, we must have
k∑
j=1

χP(n+ hj)− ρ > 0,

for some n ∼ N . As this happens for all large N ,
k∑
j=1

χP(n+ hj) > ρ

holds for infinitely many integers n. As each χP(n + hj) is an integer, this completes the
proof. �

Fix some 0 < ξ ≤ 1. Writing n for the tuple (n+ h1, . . . , n+ hk), we make the following
choice of sieve parameters an :

an =

( ∑
d|n

P+(d)<Rξ1

λd

)2

,

with the sequence (λd) chosen in terms of F as in (3.2). We will refer to the corresponding
sums with this choice of sieve parameters as S1(ξ) and S2(ξ) respectively. We proceed
to derive asymptotic formulas for S1(ξ) and S2(ξ) by applying our smooth higher rank
sieve.

5.1. Asymptotic formula for S1(ξ). Recall that S1(ξ) denotes the ξ-smooth sum

S1(ξ) :=
∑
n∼N

n≡b (mod W )

( ∑
dj |n+hj∀j
P+(d)<Rξ1

λd

)2

Theorem 5.2. Choose Θ < 1. With λd’s chosen as in (3.2) and R1 = NΘ/2−δ, we have

S1(ξ) = (1 + o(1))
W k−1

φ(W )k
N

(logR1)k
ξkCF ,F(ξ)(1),

with CF ,F(ξ)(1) given by∫
(R+)k

ρ(t)

(∫
∆k(1/ξ)

ω+(r − t)F (1)(ξr)dr

)2

dt,

where ∆k(1/ξ) is the simplex {t ∈ [0,∞]k :
∑k

j=1 tj ≤ 1/ξ}.
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Proof. We wish to prove this as an application of Theorem 4.7. Note that the setting of the
sieve and verification of conditions H1 to H3 are the same as in the proof of Lemma 4.2 in
[17]. As rd = O(1) in this case, |λd|’s are bounded, and Θ < 1, H4* follows from the bound∑

[d,e]<NΘ

P+([d,e])<Nξθ/2

1�
∑

[d,e]<NΘ

1� N

(logN)A

for any A > 0. The tuple α is in this case just the tuple 1 = (1, . . . , 1) and α =
∑

j αj = k.
We have

c(W ) =
W k

φ(W )k
,

and X = N/W exactly as before. It is clear that the result now follows directly from
Theorem 4.7. The integral CF ,F(ξ)(1) is as in Lemma 4.5. It can be simplified to∫

(R+)k
ρ(t)

∫
∆k(1/ξ)

∫
∆k(1/ξ)

ω+(s− t)ω+(r − t)F (1)(ξs)F (1)(ξr)drdsdt

=

∫
(R+)k

ρ(t)

(∫
∆k(1/ξ)

ω+(r − t)F (1)(ξr)dr

)2

dt,

where the limits of integration arise since the support of F(x) is the simplex ∆k(1) and
the support of the Dickman function ρ(u) is R+. �

Remark. We remark that when ξ = 1, the above theorem gives back precisely Lemma
4.2 of [17] as a special case. Indeed, S1(1) is nothing but S1, as the smoothing condition is
redundant when ξ = 1. Consider the final expression for CF ,F(ξ)(1) obtained from Lemma
4.5. If ξ = 1, then the support of the function F and hence the range of integration is the
usual simplex

∆k(1) := {(t1, . . . , tk) ∈ [0,∞)k : t1 + . . .+ tk ≤ 1}.
In particular while integrating over this simplex, for each tj we have the bounds 0 ≤
tj ≤ 1. Recall that in this range, the Dickman function ρ is simply 1, while the Buchstab
function ω is 0. Thus in the final expression of Lemma 4.5, putting ξ = 1 and G,H = F ,
only the term involving the product δ(s− t)δ(r − t) survives, giving us

CF ,F(1)(1) =

∫
∆k(1)

(F (1)(t))2dt.

This is nothing but the functional η(F) of Lemma 4.2 in [17].

5.2. Asymptotic formula for S2(ξ). Let us recall the sum S2(ξ). We may write

S2(ξ) =
k∑

m=1

S
(m)
2 (ξ),

where

S
(m)
2 (ξ) :=

∑
n∼N

n≡b (mod W )

χP(n+ hm)

( ∑
dj |n+hj∀j
P+(d)<Rξ1

λd

)2

We proceed to derive an asymptotic formula for S(m)
2 (ξ).
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Theorem 5.3. Choose Θ = 1/2 + 2$ − δ, with some small δ > 0 and $ a positive number such
that (1.3) holds (namely, $ satisfies 600$ + 180η < 7, where η = Θξ). With λd’s chosen as in
(3.2) and R1 = NΘ/2−δ, we have

S
(m)
2 (ξ) = (1 + o(1))

W k−1

φ(W )k
π(2N)− π(N)

(logR1)k−1
ξk−1CFm,Fm(ξ)(1),

where the function Fm acting on (k − 1)-tuples is defined in terms of F by

Fm(x1, . . . , xm−1, xm+1, . . . , xk) = F(x1, . . . , xm−1, 0, xm+1, . . . , xk)

and CFm,Fm(ξ)(1) is given by∫
(R+)k−1

ρ(t)

(∫
∆k−1(1/ξ)

ω+(r − t)F (1)
m (ξr)dr

)2

dt.

(Here, ∆k(1/ξ) is as defined in Theorem 5.2.)

Proof. Hypotheses H1, H2 and H3 hold as in the proof of Lemma 4.3 in [17] to give

X =
π(2N)− π(N)

φ(W )
∏

j 6=m φ(dj)

and rd = EP(N, q, a), where a is some residue class co-prime to q = W
∏

j 6=m dj and
EP(x, q, a) is as defined by (1.1).

To check H4* with Y = N , it suffices to check that∑
[d,e]<NΘ

P+([d,e])<NΘξ

|EP(N, q, a)| � N

(logN)A
,

for any A > 0. As W � log logN , we see that there exists ε > 0 small enough so that∑
[d,e]<NΘ

P+([d,e])<NΘξ

|EP(N, q, a)| �
∑

q<NΘ+ε

P+(q)<NΘξ

|EP(N, q, a)|

�
∑

q<N
1
2 +2$

P+(q)<Nη

|EP(N, q, a)|

which is of the order of N(logN)−A, for any A > 0 by (1.3).
Keeping in mind the additional constraint dm = 1 on tuples d as described in Lemma

4.3 of [17], which forces themth component of the functionF to be zero, the result follows
as an application of Theorem 4.7. �

It can be observed as before that putting ξ = 1 yields Lemma 4.3 of [17]. Furthermore,
in the expression obtained for S(m)

2 (ξ) above, it is clear that the specific value of m has no
role to play. Due to the symmetry of the integrals, we can write

S2(ξ) =
k∑

m=1

S
(m)
2 (ξ)(5.2)

= (1 + o(1))
W k−1

φ(W )k
π(2N)− π(N)

(logR1)k−1
ξk−1kCFk,Fk(ξ)

(1),
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with notation as in Theorem 5.3, setting m = k.
We remark that the densities depending on ξ in the expressions for S1(ξ) and S2(ξ) are

strictly positive, as can be seen from the positive integrands and limits of integration.
Thus, ξ- smoothing gives for the sums S1 and S2 the expected asymptotic formulas mul-
tiplied by some strictly positive density factor depending on ξ. This is indeed what one
would expect, in the spirit of the classical Buchstab iteration procedure.

6. SOME MATERIAL TOWARDS NUMERICAL BOUNDS

Choosing some Θ which is admissible in the derivation of the asymptotic formula for
Q1 as well as Q2, one obtains the following after using the prime number theorem.

Theorem 6.1. Choose Θ = 1/2 + 2$, with $ > 0 and 600$+ 180ξ < 7. Then, with λd’s chosen
as in (3.2) in terms of F , and R = NΘ/2−δ, we have as N →∞,

S(N, ν) := S2 − νS1

∼ W k−1

φ(W )k
N

(logR)k
ξk−1

((
Θ

2
− δ
)
kCFk,Fk(ξ)

(1) − νξCF ,F(ξ)(1)

)
.

Combining Proposition 5.1 with the above result, we need

(6.1) ν <

(
Θ

2
− δ
)
k

ξ

CFk,Fk(ξ)
(1)

CF ,F(ξ)(1)

This suggests that we should maximize the functional appearing above, prompting us to
define

Mk(ξ) = sup
F
k
CFk,Fk(ξ)

(1)

CF ,F(ξ)(1)
,

where the supremum is taken over all symmetric smooth functions supported on ∆k(1).
This can be viewed as the ‘ξ-smooth’ analogue of the classical functional Mk encountered
in [13], [19] and [17]. We will express Mk(ξ) in a more amenable form, which also makes
it easier to check that Mk(1) is indeed the functional Mk defined in (33) of [19].

We write F (1)(x) as G(x). Then G is a symmetric smooth function supported on the
simplex ∆k(1). Expressing G as

G(x) =
∂

∂xm

(
∂k−1F(t)

∂x1 . . . ∂xm−1∂xm . . . ∂xk

)
,

we see from the fundamental theorem of calculus that the function F (1)
m that appears in

Theorem 5.3 is simply the anti-derivative of G with respect to the mth component, eval-
uated at xm = 0. It is also clear that the anti-derivative of G with respect to the mth
component has the same support as F . Hence, we can write∫ ∞

0

G(x)dxm = −
(

∂k−1F(x)

∂x1 . . . ∂xm−1∂xm . . . ∂xk

)∣∣∣∣
xm=0

= −F (1)
m (x).

In particular, F (1)
k evaluated at ξr, namely F (1)

k (ξr) equals

−
∫ ∞

0

G(ξr1, . . . , ξrk−1, xk)dxk.
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This allows us to recast Mk in terms of G(x) as

(6.2) Mk(ξ) = sup
G

kJk(G, ξ)

I(G, ξ)
,

where the supremum is taken over all symmetric smooth functions supported on ∆k(1)
and the functionals Jk(G, ξ) and I(G, ξ) are defined as follows.

Jk(G, ξ) :=

∫
(R+)k−1

ρ(t)

(∫
∆k−1(1/ξ)

ω+(r − t)
(∫ ∞

0

G(ξr1, . . . , ξrk−1, x)dx

)
dr

)2

dt,(6.3)

and

I(G, ξ) :=

∫
(R+)k

ρ(t)

(∫
∆k(1/ξ)

ω+(r − t)G(ξr)dr

)2

dt.(6.4)

We would like estimates for the new integrals J(G, ξ) and I(G, ξ) in terms of the func-
tionals J(G, 1) and I(G, 1) that appear for the higher rank sieve without smoothing. Recall
from [17] that

(6.5) J(G, 1) =

∫
∆k−1(1)

(∫ ∞
0

G(t)dtk

)2

dt1 . . . dtk−1,

and

(6.6) I(G, 1) =

∫
∆k(1)

G(t)2dt.

Let us define the functional

Ik(F, ξ) =

∫
(R+)k

ρ(t)

(∫
(R+)k

ω+(r − t)F (ξr)dr

)2

dt

The problem thus reduces to finding upper and lower bounds for this functional in terms
of

Ik(F ) =

∫
(R+)k

F (t)2dt.

Lower bound. Using the bound ω+(u) = ω(u) + δ(u) ≥ δ(u) for any u ∈ R+, we can write

Ik(F, ξ) ≥
∫

(R+)k
ρ(t)F (ξt)2dt = ξ−k

∫
(R+)k

ρ(t1/ξ) . . . ρ(tk/ξ)F (t)2dt

Upper bound. By the Cauchy-Schwarz inequality, we have( ∫
(R+)k

ω+(r − t)F (ξr)dr

)2

≤
∫

(R+)k

ω+(r − t)2dr

∫
(R+)k

F (ξr)2dr

= ξ−kI(F )

∫
(R+)k

ω+(r − t)2dr

This gives

Ik(F, ξ) ≤ ξ−kI(F )

(∫
(R+)k

ρ(t)

∫
(R+)k

ω+(r − t)2drdt

)
.
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Bounding the integrals that arise in the lower and upper bounds above needs some work
and we defer this to a future paper. We expect that effective bounds for these integrals
should yield a general result involving a remainder term that would encompass contri-
butions both with and without smoothing. More precisely, we should be able to capture
contributions from moduli below Y θ and also from moduli up to Y Θ with prime fac-
tors below Y ξ. Implementing these ideas and obtaining numerical improvements would
entail the use of variational techniques as well as the following identities involving the
Dickman and Buchstab functions.

Recall that the Dickman function is supported on R+. Broadhurst [1] gives a closed
form for the Dickman function in terms of polylogarithms, in certain ranges. We state
below the closed form in the range 0 to 2.

Proposition 6.2. The Dickman function in the domain [0, 2] is given by

ρ(u) =

{
1 if 0 ≤ u ≤ 1
1− log u if 1 ≤ u ≤ 2

Proposition 6.3. The convolution ρ ∗ ρ in the domain [0, 2] is given by,

ρ2(u) =

{
u if 0 ≤ u ≤ 1
3u− 2u log u− 2 if 1 ≤ u ≤ 2

Proof. The support of ρ gives

ρ2(u) =

∫ u

0

ρ(t)ρ(u− t)dt.

If 0 ≤ u ≤ 1, then the integrand is simply 1, giving the desired answer. For 1 ≤ u ≤ 2, we
write the above integral as∫ u−1

0

ρ(t)ρ(u− t)dt+

∫ 1

u−1

ρ(t)ρ(u− t)dt+

∫ u

1

ρ(t)ρ(u− t)dt.

Let us consider the first integral. The limits of integration imply that 0 ≤ t ≤ 1 and
1 ≤ u− t ≤ 2, giving that this integral is∫ u−1

0

(1− log(u− t))dt.

Similarly, the second integral is simply ∫ 1

u−1

dt,

while the third is given by ∫ u

1

(1− log t)dt.

Evaluating these integrals gives the desired expression for ρ2(u). �

Recall that the Buchstab function ω(u) is supported on u ≥ 1.

Proposition 6.4. The Buchstab function in the domain [0, 2] is given by

ω(u) =

{
0 if 0 ≤ u ≤ 1
1/u if 1 ≤ u ≤ 2.

The actual implementation of these results we reserve for a future date.
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7. CONCLUDING REMARKS

We believe that this implementation is just the beginning of a larger program. We en-
deavor to explore further applications of this theory to other classical questions of number
theory.
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