
Daniel Cloutier 10193831 Math 401: Homework 1 October 24, 2018

Thanks are due to Nour Fahmy and Chelsea Crocker for helpful conversations

Problem 1.

Solution.

a) We know that for any �nite graph, we must have∑
x

d(x) = 2|E(x)|.

However, we note that

3+ 3+ 3+ 3+ 5+ 6+ 6+ 6+ 6 = 41

which is not an even number. Therefore, there can be no such graph.

b) In a bipartite graph, say composed of parts A and B we must have∑
a∈A

d(a) =
∑
b∈B

d(b) = |E(x)|.

We note that

3+ 3+ 3+ 5+ 6+ 6+ 6+ 6 = 38,

so we would need to �nd two subsets which both add up to 38/2 = 19. However, we note that both

3 and 6 have 3 as a prime factor, but 5 does not, so there can be no way to �nd two subsets of this

set that add up to the same total, much less two subsets that add up to 19. Therefore, there exists no

bipartite graph with this degree sequence.

Problem 2.

Solution. We will prove this by induction. Start with our base case, n = 0, with F0 = 1.
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We know that Fn = Fn−1 + Fn−2, by the de�nition of the �bbonacci numbers.
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Which is what we wanted to prove.

Problem 3.

Solution. In a connected simple graph with n vertices, the possible degrees of a vertex range from 1 ( since

the graph is simple and every vertex is connected to at least one other vertex) to n − 1, in the case where

the vertex is connected to every other vertex. So, if we have n vertices, and n− 1 options for the degree of

a vertex, by the pigeonhole principle, at least two vertices must have the same degree. There may be more,

but there must be at least two.

Now, suppose the graph was not connected, and suppose that there were j vertices which do not connect

to any other vertices. The possibilities for the degree of a vertex range from 0, for the disconnected vertices,

to n−j−1. However, we have n−j connected vertices, so at least two of them must have the same degree.

Problem 5.

Solution. Suppose that X did not contain a cycle. If it did not, we could �nd a path of maximum length,

say of length l. However, the last vertex in this path, say vl, is the tail of at least one edge leading to another

vertex say vl+1 by assumption. That means that we have two cases: either vl+1 6= vi, i ∈ {0, 1, . . . , l}, in

which case we did not have a path of maximum length, contradicting our assumption, or vl+1 = vi for some

i, which means that we do have a cycle.
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Problem 6.

Solution.

⇒ First, assume that we have an eulerian circuit in some graph X. We can select some vertex v as the

starting point of our circuit. As we traverse a path through the graph, we must enter and exit each

vertex we encounter which is not v. Each entrance and exit accounts for two edges, so d+(u) = d−(u)

for all u 6= v. We must also end at v to be a closed path, so d+(v) = d−(v), and the indegree and

outdegree of all vertices is the same.

⇐ Now, suppose that we have d+(v) = d−(v) for all v ∈ X. We prove that X contains an Eulerian circuit,

by induction. The simplest case where we have d+(v) = d−(v) is when we have 3 edges, a simple

graph in the shape of a triangle. Now, we assume that the statement is true for a graph with m − 1

edges, and use that to show that it is true for graphs with m edges. Since the graph is connected, the

indegree and outdegree of every vertex is at least 1, and therefore the graph must contain a cycle by

question 5. We can remove the edges of the cycle to obtain a graph with |E(x)| = ` < m. Since we

have removed an even number of edges from each vertex (one in, one out), the remaining graph still

has that d+(v) = d−(v) ∀ v. It is composed of smaller circuits, each of which have Eulerian circuits

by our inductive hypothesis. Traversing the edges of the circuit we removed, and then going through

the Eulerian circuits as we encounter them gives us an Eulerian circuit on the whole graph, and the

statement is proved.

Problem 7.

Solution. If n is even, then we can separate the vertices into the even-numbered ones, c2j, and the odd-

numbered ones, c2j+1. Clearly, each even vertex will touch two odd vertices, and each odd vertex will

touch two even vertices. We can colour the even vertices blue, and the odd vertices red, to make the graph

bipartite. For example, in the case n = 8:
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Problem 8. a) We know by the binomial theorem that
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We can derive this with respect to x:
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Which is what we were trying to prove.

b) First, we note that the quantity we are trying to evaluate is
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counts the number of subsets of a set of size n, so to count the sizes of subsets squared,

we multiply by k2. Now, recall that we proved
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. We can derive again to obtain
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And we can note that, by setting x = 1 in (1), we obtain
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So therefore, ∑
A⊆[n]

|A|2 = (n2 + n)2n−2

Problem 9.

Solution. There is no such simple graph. Since one vertex has degree 9, it is connected to every other

vertex, in this graph called vertex a.
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Two of the other vertices have degree 1, so no more edges can connect to them (vertices b, c). However,

there are only 7 more free vertices, and one of the vertices must have degree 8, so there can be not such

graph.
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