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On the number of special numbers
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Abstract. For lack of a better word, a number is called special if it has mutually
distinct exponents in its canonical prime factorizaton for all exponents. Let V (x) be the
number of special numbers ≤ x. We will prove that there is a constant c > 1 such that

V (x) ∼ cx

log x
. We will make some remarks on determining the error term at the end.

Using the explicit abc conjecture, we will study the existence of 23 consecutive special
integers.

Keywords. Special numbers; squarefull numbers; Thue–Mahler equations; abc
conjecture.

2000 Mathematics Subject Classification. Primary: 11BN3; Secondary: 11N25,
11D59.

1. Introduction

For lack of a better word, a natural number n is called special if in its prime power
factorization

n = p
α1
1 . . . p

αk

k , (1)

we have all the non-zero αi as distinct. This concept was introduced by Bernardo Recamán
Santos (see [8]). He asked if there is a sequence of 23 consecutive special numbers. This
seemingly simple question is still unsolved and it is curious that it is easy to see that
there is no sequence of 24 consecutive special numbers. We will show this below. If one
assumes the abc conjecture, then Pace Nielsen showed that there are only finitely many
sequences of 23 consecutive special numbers [8]. Presumably there are none. We explore
this problem using explicit forms of the abc conjecture.

It is well known that assuming the abc conjecture one can prove that some diophantine
equations have only a finite number of solutions. Due to its ineffective nature, the abc
conjecture does not give an explicit computable bound for the number of solutions or
their size. On the other hand, assuming a weak effective version of the abc conjecture
(as in [3]), we can find all solutions of some diophantine equations. Several authors have
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424 Kevser Aktaş and M Ram Murty

formulated explicit versions of the abc conjecture. Notable among these are the ones due
to Baker [1] and Browkin [3] and [4]. We will use this to show:

Theorem 1.1. Assuming the explicit abc conjecture, there are only finitely many
sequences of 23 consecutive special numbers. If there are 23 consecutive special numbers
x, x + 1, . . . , x + 22, then

x < 2e637272385e254908(63727)5
.

The question of Recamán Santos raises the interesting question of the distribution of
special numbers. Clearly every prime power is special, but are there significantly more?
In this context, we show:

Theorem 1.2. Let V (x) be the number of special numbers ≤x. Then, there exists a
constant c > 1 such that

V (x) = cx

log x
+ O

(
x

log2 x

)
.

In fact, c is approximately 1.7.

Thus, the number of special numbers is comparable in size to the set of prime powers.

2. Preliminaries

Conjecture 2.1. Let us recall the abc conjecture of Oesterlé and Masser (1985). Fix ε > 0.
Then, there exists a constant κ(ε) depending only on ε such that

a + b = c, (2)

where a, b and c are coprime positive integers. Then

c � κ(ε)

⎛
⎝ ∏

p|abc

p

⎞
⎠

1+ε

.

As the referee remarks, the conjecture is inspired by the folklore conjecture that if D

is a multiplicatively closed set generated by finitely many numbers (which we could take,
without loss of any generality to be the first k primes), then the equation a + b = c has
only finitely many solutions in mutually coprime elements a, b, c of D.

For any positive integer n > 1, let R = Rad(n) = ∏
p|n p be the radical of n, and ω(n)

be the number of distinct prime factors of n. Baker [1] made a more precise conjecture:

c <
6

5
N

(log N)ω

ω! , (3)
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where N = R(abc) and ω = ω(N). A refined version of this conjecture due to Laishram
and Shorey [9] yields the following:

Theorem 2.2. Let a, b and c be pairwise coprime positive integers satisfying (2) and
R = Rad(abc). Then, Baker’s conjecture (3) implies

c < R1+ 3
4 .

Further, under the same hypothesis (3), for 0 < ε ≤ 3
4 , there exists ωε depending only

on ε such that when R = Rad(abc) ≥ Rε = ∏
p≤pωε

p, we have

c < κ(ε)R1+ε,

where

κ(ε) = 6

5
√

2π max(ω, ωε)
≤ 6

5
√

2πωε

with ω = ω(R). Here are some values of ε, ωε and Rε :

ε 3
4

7
12

6
11

1
2

34
71

5
12

1
3

ωε 14 49 72 127 175 548 6460
Rε e37.1101 e204.75 e335.71 e679.585 e1004.763 e3894.57 e63727

We will apply this theorem below with ε = 1/3. We will also need to invoke some results
on the Thue equation in order to use the explicit abc. These are equations of the form

F(x, y) = h, (4)

where F(x, y) ∈ Z[X, Y ] is an irreducible binary form of degree n ≥ 3 and h is a
non-zero rational integer. Bombieri and Schmidt [2] obtained bounds for the number of
solutions to this equation. The most recent results on the bounds for the solutions of Thue
equation were obtained by Bugeaud and Györy [5]. They improved the best known bounds
for the solutions of Thue equations over Z in the following theorem.

Theorem 2.3. All solutions x, y of equation (4) of degree n satisfy

max{|x|, |y|} < exp{c4H
2n−2(log H)2n−1 log h∗},

where h∗ = max(|h|, e), c4 = c4(n) = 3n+9n18(n+1) and H(≥ 3) is the maximum
absolute value of the coefficients of F .

3. Consecutive special numbers

We now discuss the Recamán Santos problem. Let us first show that there is no sequence
of consecutive special numbers of length 24.

Lemma 3.1. There is no sequence of 24 consecutive special numbers.



426 Kevser Aktaş and M Ram Murty

Proof. We begin with the elementary observation that each of four consecutive numbers
cannot be a multiple of 2 or 3. The easy proof of this is left to the reader. Now suppose

n + 1, n + 2, . . . , n + 24

are all special. Four of these are divisible by 6, say 6k, 6(k + 1), 6(k + 2), 6(k + 3). We
claim all of k, k + 1, k + 2, k + 3 are not coprime to 6. Indeed, if any one is coprime to
6, (say) m, then 6m is not special which gives a contradiction. So we may suppose each
is divisible by either 2 or 3. But this is impossible by our elementary observation. This
completes the proof. �

It seems difficult to reduce 24 to 23 in the previous lemma without using some advanced
techniques. We now address this issue. We begin with the following elementary lemma.

Lemma 3.2. Any squarefull number can be written as a3b with b cubefree.

Proof. Every squarefull number n can be written in the form of p
α1
1 p

α2
2 . . . p

αk

k for all pi’s
are distinct primes and each exponent αi ≥ 2, where i = {1, 2, . . . , k}. Let pα be one of
these prime powers dividing n, where α = 3β + δ ≥ 2 with δ = 0, 1, 2. The result is now
immediate. �

We follow the strategy of our earlier lemma. Suppose now that there are 23 consecutive
special numbers. At least 11 of them are even. Among these at least five of them are
divisible by 2 and not by 4. Let us write these five numbers as

2(m − 4), 2(m − 2), 2m, 2(m + 2), 2(m + 4),

where m − 4,m − 2,m,m + 2,m + 4 are all odd and squarefull. Now consider the abc
equation

(m2 − 4) + 4 = m2.

We apply Theorem 2.2 with ε = 1/3:

m2 ≤ 6

5
√

2π · 6460
(m1/22m1/2m1/2)4/3, (5)

≤ 6

5
√

2π · 6460
(2m3/2)4/3 (6)

which leads to a contradiction if Rad(m(m − 2)(m + 2)) ≥ e63727. Thus, we may assume
that Rad(m(m − 2)(m + 2) < e63727. We now apply the theory of the Thue equation
to obtain an effective bound on m. Indeed, by Lemma 3.2, we can write m2 = ba3 and
m2 − 4 = cd3 with b, c cubefree. By the above, both b, c are bounded since they are
cubefree and all their prime factors are less than e63727. Now we have a finite number of
Thue equations:

ba3 − cd3 = 4,

with b, c less than e2(63727). By Theorem 2.3, we have the following.

PROPOSITION 3.3

Any solution (a, d) of the Thue equation

ba3 − cd3 = 4
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satisfies

|a|, |d| < 4384e254908(63727)5
.

Since b and c are effectively bounded by e2(63727), we find that m2 is effectively
bounded by

e2(63727)4385e254908(63727)5
.

In other words, if there are 23 consecutive special numbers x, x + 1, ..., x + 22, then

x < 2e637272385e254908(63727)5
.

This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Special numbers can be grouped into two disjoint groups V0 and V1 respectively, where
in V0, some αi is 1 in (1) and in V1, all αi ≥ 2. The elements of V1 are then squarefull
numbers. In 1970, Golomb [7] proved an estimate for the number of squarefull numbers.
If V1 = #{n ≤ x : n squarefull for αi ≥ 2}, then by our earlier study of squarefull
numbers we see that V1(x) = O(

√
x). Thus, to find the asymptotic formula for V (x), we

need only study V0(x) = #{n ≤ x| n = mp, (m, p) = 1,m squarefull and special}.
Every number in V0 has a unique representation as

n = pm,

where p is prime and (m, p) = 1 with m squarefull and special. Let y be a parameter
(to be choosen later). We first consider the contribution of those squarefull m ∈ V0 with
m > y. Clearly, the number of such numbers is

≤
∑

m > y
m squarefull

x

m
. (7)

Since the number of squarefull numbers ≤ x is ∼ c1
√

x, it is not difficult to see by
partial summation that

∑
m > y

m squarefull

1

m
	 1√

y
. (8)

This is an elementary exercise in partial summation (see [12]). Thus, the sum in (7) is
	 x√

y
. We will choose y = log4 x so that the contribution from m > y is O(x/ log2 x).

Henceforth, we assume m < y.
We now need to count the number of elements of V0 which have a unique representation

as n = pm, (p,m) = 1 and m special and squarefull. We consider first those n with
p < y. Since m < y, the number of n = pm with p < y and m < y is clearly
≤ y2 = log8 x which is negligible compared to our main term. Thus we may assume
p > y. Since now p > y and m < y, the condition (p,m) = 1 is automatically satisfied.
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Hence,

V0(x) =
∑

m < y
m sq-full and special

x/m

log(x/m)

(
1 + O

(
1

log(x/m)

))

by an application of the prime number theorem. Since m < y = log4 x, we see that

1

log(x/m)
= 1

log x

(
1 + O

(
log m

log x

))

= 1

log x

(
1 + O

(
log m

log x

))
+ O(y2).

Hence

V0(x) = x

log x

∑
m < y

m sq-full and special

1

m
+ O

(
x

log2 x

)
,

since
∑

m sqfull

log m

m

is convergent as well as the sum

∞∑
m = 1

m sq-full and special

1

m
.

We also include m = 1 in this sum. In fact,

∑
m < y

m sq-full and special

1

m
=

∞∑
m=1

′ 1

m
−

∑
m>y

1

m
,

where the dash on the summation means that either m = 1 or m is squarefull, and by our
remarks in (8), we see this is equal to

∞∑
m=1

′ 1

m
+ O

(
1√
y

)
. (9)

We remark that the error term that emerges from the proof above is O(x/ log2 x). This
completes the proof.

It is possible to improve the error term and actually show that for any k ≥ 2, we have
constants c0, c1, ..., ck such that

V (x) =
k∑

j=0

cj x

logj x
+ O

(
x

logk+1 x

)
.

This is easily done by inserting a stronger form of the prime number theorem into the
proof above.
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5. Concluding remarks

An effective version of the abc conjecture can be used to determine (conjecturally) that
there cannot be 12 consecutive special numbers. Suppose not. Let

n + 1, n + 2, . . . , n + 12

be all special. Six of these are even, say

2k, 2(k + 1), 2(k + 2), 2(k + 3), 2(k + 4), 2(k + 5).

Of these six, at least three are not divisible by 4 and so we may write these as

2j, 2j + 4, 2j + 8

with j odd and powerful as well as j + 2, j + 4. That is,

j, j + 2, j + 4 = l − 2, l, l + 2,

(say) are all powerful and the abc equation

(l2 − 4) + 4 = l2

implies

l2 	 (l1/2l1/2l1/2)1+ε.

This implies that l is bounded.
Perhaps more is true. We may conjecture (based on numerical evidence) that there are

no 6 consecutive special numbers. The only known five consecutive special integers are
{1, 2, 3, 4, 5}, {16, 17, 18, 19, 20}, {241, 242, 243, 244, 245}, {2644, 2645, 2646, 2647,
2648} and {4372, 4373, 4374, 4375, 4376}. Those are only ones with entries smaller than
106. There are a few more known up to 7·108. In case of squarefull (or powerful) numbers,
as a summary of results on three consecutive powerful numbers, Erdös [6] conjectured
that there does not exist three consecutive powerful numbers. Golomb [7] also considered
this question, as did Mollin and Walsh [10]. See an application of the abc conjecture in
page 135 of [11].
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