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My vast transcendence holds the cosmic whirl;
I am hid in it as in the sea a pearl.

Sri Aurobindo, The Indwelling Universal, Collected Poems.






Preface

This book grew out of lectures given by the first author at Queen’s Univer-
sity during 2006 and lectures by the second author at the Chennai Mathe-
matical Institute during 2008. These constitute the first 18 chapters of the
book intended to be an introductory course aimed at senior undergraduates
and first-year graduate students. The primary goal of these chapters is to
give a quick introduction to some of the beautiful theorems about tran-
scendental numbers. We begin with some earliest transcendence theorems
and thereafter move to the Schneider-Lang theorem. This requires some
rudimentary background knowledge in complex analysis, more precisely the
connection between the growth of an analytic function and the distribution
of its zeros. Since this constitutes an essential ingredient of many of the
transcendence results, we discuss the relevant features in chapter 5. We also
require some familiarity with elementary algebraic number theory. But we
have tried our best to recall the required notions as and when we require
them. Having proved the Schneider-Lang theorem, we introduce some of
the accessible and essential features of the theory of elliptic curves and el-
liptic functions so that the reader can appreciate the beauty of the primary
applications. Thus chapters 1 to 18 essentially comprise the material for
an introductory course.

The second part of the book, namely Chapters 19 to 28, are additional
topics requiring more maturity. They grew out of seminar lectures given
by both authors at Queen’s University and the Institute of Mathemati-
cal Sciences in Chennai, India. A major part of these chapters treats the
celebrated Baker’s theorem. We present a proof of Baker’s theorem fol-
lowing the works of Bertrand and Masser. Thereafter, we briefly describe
some of the applications of Baker’s theorem, for instance to the Gauss class
number problem for imaginary quadratic fields. In Chapter 21, we discuss
Schanuel’s conjecture which is one of the central conjectures in this sub-
ject. We devote this chapter to derive a number of consequences of this
remarkable conjecture.

From Chapter 22 to 26, we concentrate on some recent applications
of Baker’s theorem to the transcendence of special values of L-functions.
These L-functions arise from various arithmetic and analytic contexts. To
begin, we give a detailed treatment of the result of Baker, Birch and Wirs-



ing. This is perhaps the first instance when transcendental techniques are
employed to address the delicate issue of non-vanishing of a Dirichlet series
at special points. In Chapters 25, we specialise to questions of algebraic
linear independence of special values of Dirichlet L-functions. In chapter
26, we consider analogous questions for class group L-functions.

In Chapter 27, we focus on applications of Schneider’s theorem and
Nesterenko’s theorem to special values of modular forms. These modular
forms are a rich source of transcendental functions and hence potential can-
didates to generate transcendental numbers (hopefully "new”). Of course,
one can ask about the possibility of applying transcendence tools not just
to modular forms, but also to their L-functions. But this will force us to
embark upon a different journey which we do not undertake here.

Finally, the last chapter is intended to give the reader an introduction
to the emerging theory of periods and multiple zeta values. This is not
meant to be an exhaustive account, but rather an invitation to the reader
to take up further study of these elusive objects. This chapter is essentially
self-contained and can be read independent of the other chapters.

To summarize, we hope that the first part of this book would be suitable
for undergraduates and graduate students as well as non-experts to gain
entry into the arcane topic of transcendental numbers. The last ten chapters
would be of interest to the researcher interested in pursuing the interrelation
between special values of L-functions and transcendence.

To facilitate practical mastery, we have included in each chapter basic
exercises that would be helpful to the beginning student.
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Notations and basic
definitions

We denote by N the set of non-negative integers, by Z the ring of rational
integers and by Q,R,C the fields of rational numbers, real numbers and
complex numbers respectively. A number field K is a finite extension of Q
contained in C. Q denotes the algebraic closure of Q in C.

Given an integral domain R containing a field k, a collection of ele-
ments aq,- -+, a, in R is called algebraically dependent over k if there ex-
ists a non-zero polynomial P € k[xy,- - ,x,] such that P(aq, -+, ) =0.
Otherwise, the elements are called algebraically independent over k. The
transcendence degree of a field F over k is the cardinality of a maximal al-
gebraically independent subset of F' over k. Since the transcendence degree
over k or its any algebraic extension is the same, the notion of algebraic
independence of complex numbers over Q or Q is the same. Thus we simply
speak of algebraically independent or dependent complex numbers.

We shall also be concerned with algebraic independence of functions. A
meromorphic function on C is said to be transcendental if it is transcenden-
tal over the field of rational functions C(z). A collection of meromorphic
functions fy,---, f, on C is said to be algebraically independent over C if
for any nonzero polynomial P € Clzy, - -+ ,xz,], the function P(fy,---, fn) is
not the zero function. Otherwise, the functions are called algebraically de-
pendent. Thus a function f is transcendental if f and the identity function
I(z) = z are algebraically independent. Most of the time, we shall simply
write functions to be algebraically independent, the implicit assumption
being that the independence is over C.

This notion can be extended to functions in several variables. A collec-
tion of entire functions fi,--- , f, on C? is said to be algebraically indepen-
dent over C if for any nonzero polynomial P € C[xy,- - ,x,], the function
P(f1,--+, fn) is not the zero function. Otherwise, the functions are called
algebraically dependent.

We write f(z) = O(g(z)) or equivalently f(z) < g(z) when there exists
a constant C' such that |f(z)| < Cg(x) for all values of  under considera-
tion.



Throughout for a@ # 0, we define o to be equal to e?1°8® where we
interpret log a as the principal value of the logarithm with argument in
(—m, 7]. However, we shall be frequently working with the set of logarithms
of non-zero algebraic numbers. In this set, we allow all possible values of
log. This forms a Q-vector space. It is more convenient to realise this as
being equal to the set exp’l(@x), where exp is the familiar exponential
map. This description has an analogous manifestation in the elliptic set up
which we shall come across in the later chapters.



Chapter 1

Liouville’s theorem

A complex number « is said to be an algebraic number if there is a non-zero
polynomial f(z) € Q[z] such that f(a) = 0. Given an algebraic number a,
there exists a unique irreducible monic polynomial P(z) € Q[z] such that
P(a) = 0. This is called the minimal polynomial of . The set of all alge-
braic numbers denoted by Q is a subfield of the field of complex numbers.
A complex number which is not algebraic is said to be transcendental.

An algebraic number « is said to be an algebraic integer if it satisfies
a monic polynomial in Z[z]. It is not difficult to see that the minimal
polynomial of an algebraic integer has integer coefficients.

An algebraic number « is said to be of degree n if its minimal polynomial
P(z) has degree n. Equivalently, Q(«) is a finite extension of Q of degree
n.

In 1853, Liouville proved a fundamental theorem concerning approxi-
mations of algebraic numbers by rational numbers. This theorem enabled
him to construct explicitly some transcendental numbers.

Theorem 1 (Liouville, 1853) Given a real algebraic number a of degree
n > 1, there is a positive constant ¢ = c(a) such that for all rational
numbers p/q with (p,q) =1, ¢ > 0, we have

Proof. Let P(z) be the minimal polynomial of . By clearing the de-
nominators of the coefficients of P(x), we can get a polynomial of degree n
with integer coefficients which is irreducible in Z[z] and has positive leading
term. Let

f(@) =anz™ + ap_12" + - +ayx + ap € Zz]

be this polynomial. We sometimes refer this as the minimal polynomial of
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« over Z. Then,

anpn + an—lpn_lq +---+ ann > i

q q

|f(a) = f(p/D)| = |f(p/2)| =

If « = aq,...,a, are the roots of f, let M be the maximum of the values
|ai]. If |p/q| is greater than 2M, then

’p—a s>
q qr
If |p/q| < 2M, then
ozzp‘ < 3M,
q
so that

o —

p’ > 1 > 1
a| ~ lanlg" ITj=z | —p/al ~ lan|(3M)"~1gm

Thus choosing

el = min (M, )

we have the theorem. O

Note that the constant ¢(«) can be explicitly computed once the roots
of the minimal polynomial of a are given to us. Also, it is not difficult to
extend this theorem to complex algebraic numbers of degree n. A multi-
variable generalisation of this idea is suggested in Exercise 2.

Using this theorem, Liouville was able to show that the number

=1
2 iow

is transcendental. Indeed, suppose not and call the sum «. Consider the

partial sums,
k

2& = Z 1én'

dk 0

Then, it is easily seen that

C
10K+

a—& <
qk

for some constant ¢ > 0. If a were algebraic of degree m say, then, by
Liouville’s theorem, the left hand side would be greater than c(a)/10%"™
and for k sufficiently large, this is a contradiction.



Numbers of the above type are examples of what are called Liouville
numbers. More precisely, a real number [ is called a Liouville number if
for any non-negative real number v, the inequality

0 < ‘ B — p‘ < L
q q’
has infinitely many solutions p/q € Q.

In 1909, Axel Thue was able to improve Liouville’s inequality for alge-
braic numbers having degree at least 3. More precisely, He proved that if
« is algebraic of degree n > 1, then for any € > 0, there exists a positive
constant ¢ = ¢(a, €) such that for all rational numbers p/q with ¢ > 0 and
(p,q) = 1, we have

p &
o= 5 > qn/2+1+e'

Such a theorem has immediate Diophantine applications. To see this, let
f(x,y) be an irreducible binary form of degree n > 3 with integer coefli-
cients. Then, Thue’s theorem implies that the equation

f(x,y) =M

for any fixed non-zero integer M has only finitely many integer solutions.
Indeed, we may write

n

f(xay) = an H(.’E _Oéiy) = Ma

i=1

so that each «a; is an algebraic number of degree > 2. Suppose that there
are infinitely many solutions (2, ym ). Without loss of generality, we may
suppose that for infinitely many m, we have

, for i=2 .. n.

x
< ‘m_ai
Ym

Further, by the triangle inequality,

1 1
xﬂ—ai _<xm_ il + —a1>2|0¢i—0¢1|, fori=2,....n
Thus,
T,
M1 = )] = el |22 = ][ 2 — ] 5 |22 —
Ym m m

By Thue’s theorem, we obtain

M 1
[yml[™ ™ Jym /2
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which is a contradiction for |y,,| sufficiently large.

Thue’s theorem was subsequently improved, first by Siegel, then by
Dyson and finally by Roth in 1955 who proved that if « is algebraic of
degree > 1 and € > 0, then there is a constant ¢(«, €) > 0 such that for all
rational numbers p/q with ¢ > 0 and (p,q) = 1, we have

c(ay€)
q2+e .

a—p‘>

q

In view of the classical theory of continued fractions, this result is essentially
best possible.

We end with the following theorem about algebraic independence of
certain Liouville numbers proved by Adams [1]. The proof involves a clever
modification of Liouville’s original idea.

Recall that complex numbers «y,---,q, are algebraically dependent
if there exists a non-zero polynomial P(x1,---,2,) in n variables with
rational coefficients such that P(aq,---,a,) = 0. Otherwise, they are

called algebraically independent. We have the following theorem:

Theorem 2 (Adams) Let p and q be two relatively prime natural numbers
greater than 1. Then the two Liouville numbers

oo

1 =1
a= — and fB= —

n=1 n=1

are algebraically independent.

Proof. Assume the contrary and let f(z,y) be a non-zero polynomial with
integer coefficients such that f(«, 8) = 0. Suppose that p > q. We consider
the following sequence of pairs of rational numbers

N N
1 rN

1 SN
By=) m=ypw and SN:qu.Zw~

n=1 n=1

We first note that there are infinitely many N such that f(Ry,Sy) # 0. If
not, then for all N sufficiently large, we have

o X
f(Z pm,zqn!> =0. (1.1)
n=1 n=1

Further,
1 N SN 2
PN+ < |- pm’ < pVHD! and g < ’*8 - qm’ N

(1.2)



The polynomial f(z,y) can be expressed as
fla,y) =Y Cr(x—a) (y—B)
I

where I = (4,j) runs over all pairs of non-negative integers and Cj’s are
real numbers which are zero for all but finitely many I’s. Each such pair I
gives a distinct integer d; := p’¢?. Among all the pairs I for which C; # 0,
let Iy = (ig, jo) be such that dj, is minimal. Then by (1.1) and (1.2), for
all large N,

b dI (N+1)!
0
I#I,

where D is the total degree of the polynomial f(z,y). Since dj, < dj, by
choosing N large enough, we arrive at a contradiction. Thus f(Ry,Sny) # 0
for infinitely many N. For each such N, we have by Exercise 2

(@, B) — (Rw, Sw)| > pN%

Here |.| is the standard Euclidean norm on R?. On the other hand, (1.2)
gives

C
(0 8) = (R, 53)| < vy

As N — o0, this contradicts the lower bound above. [J

Evidently, instead of taking two co prime numbers, we can generalise the
above theorem by considering finitely many multiplicatively independent
integers (see Theorem 2 of [1]).

Exercises

1. Show that Liouville’s theorem holds for complex algebraic numbers
of degree n > 2.

2. Let f € Z[x1, -+ ,x,] be a non-zero polynomial with degree d; in
variable x;. Suppose that f(@) = 0 for some @ € R™. Then show that
there exists a constant ¢ > 0 depending on @ and f such that for any
B=(ai/bi, - ,an/b,) € Q", either

f(B) =0

or
Cc

a-fgl>——r.
32

Here [.] is the standard Euclidean norm on R™.



Liouville’s theorem

. Show that the set of algebraic numbers is countable.
. Show that % is an algebraic integer.

. Find the minimal polynomial of V2 + /3 over Q.

. Show that the number

=1

is irrational.
. Show that there are uncountably many Liouville numbers.

. Show that every real number is expressible as a sum of two Liouville
numbers.



Chapter 2

Hermite’s Theorem

We will begin with the proof that e is transcendental, a result first proved
by Charles Hermite in 1873.

Theorem 3 e is transcendental.

Proof. We make the observation that

/0 e ) = e Fu)lh + / e ),

which is easily seen on integrating by parts. Thus, if we let

t
16.0)i= [ e fudn
0
then we see that
I(t, f) = €' f(0) = f(t) + I(t, f)-
If f is a polynomial of degree m (say), then iterating this relation gives
It f)= ey fO0) =D f9w. (2.1)
§=0 3=0

If F is the polynomial obtained from f by replacing each coefficient of f
by its absolute value, then it is easy from the definition that

1t )] < ltel F(je]). (2.2)

With these observations, we are now ready to prove the theorem. Suppose
e is algebraic of degree n (say), then

ane” + ap_1e" M4 Faje+ag =0, (2.3)
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for some integers a;, and aga, # 0. We will consider the combination

J = Zakl(k,f)

k=0

with
fx) =2z —1)P - (x —n)P,

where p > ag is a large prime. Using (2.3), we see that
T ) S
j=0 k=0

where m = (n + 1)p — 1. Since f has a zero of order p at 1,2,...,n and a
zero of order p — 1 at 0, we have that the summation actually starts from
j=p—1. For j = p— 1, the contribution is

FPI0) = (p - DY(=1)"Pn?.

Thus, if n < p, then f®=1)(0) is divisible by (p—1)! but not by p. If j > p,
we see that f0)(0) and f) (k) are divisible by p! for 1 < k < n. Thus, J
is a non-zero integer divisible by (p — 1)! and consequently

(p—D! <]

On the other hand, our estimate (2.2) shows that
7] < |anle*F(k)k < Ane™(2n)P
k=0

where A is the maximum of the absolute values of the ax’s. The elementary

observation )

P
el > P
(-1
gives
pPle ™ < (p— 1) < |J| < Ane™(2n)'P.

For p sufficiently large, this is a contradiction. [J

Exercises

1. Show that for any polynomial f(z), we have

/7T f(x)sinazdz = f(r) + f(0) — /7T f"(x) sin xdz.
0 0
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. Utilise the identity in the previous exercise to show 7 is irrational as
follows. Suppose m = a/b with a,b coprime integers. Let

x™(a — bx)"

n!

fz) =
Prove that .
/ f(z)sin zdz
0
is a non-zero integer and derive a contradiction from this.

. Use Euler’s identity

2?2%

to prove that there are infinitely many primes.
. Use the series " ;1/n! to show that e is irrational.

. Show that e is not algebraic of degree 2 by considering the relation
Ae+Be '+C=0, AB,C€Z,

and using the infinite series for e and e~! and arguing as in the pre-
vious exercise.

. Prove that eV2 is irrational (Hint: Consider the series expansion for
a=ev24 e‘ﬁ).
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Hermite’s Theorem




Chapter 3

Lindemann’s theorem

We will now prove that 7 is transcendental. This was first proved by F.
Lindemann in 1882. He was able to modify Hermite’s methods to establish
this result. The proof proceeds by contradiction. Before we begin the proof,
we recall two facts from algebraic number theory. The first is that if « is
an algebraic number with minimal polynomial over Z given by

—1
ant” + ap—12"" " + -+ a1z + ao,

then a,a is an algebraic integer. Indeed, if we multiply the polynomial by

a1, we see that

(ana)n + an71(ana)"_1 + 4 aoag—l -0

thereby showing that a, « satisfies a monic polynomial equation with integer
coefficients. The other roots of the minimal polynomial of o are called the
conjugates of a. Sometimes, we write these conjugates as

a® @ o g
with a(® = a. The second fact which we require is from Galois theory
and the symmetric polynomial theorem. More precisely, if f(z1,...,z,) €
Q[z1,- -+ ,zn] is & symmetric polynomial, that is, it is invariant under any
permutation of the variables, and « is an algebraic number of degree n
with conjugates a = oy, ..., ay, then f(aq,- - ,ay) € Q. Furthermore, if «
is an algebraic integer and f has integer coefficients, then f(ai, -+, ay,) is
necessarily an integer (see Exercise 1). With these remarks, we can proceed
to the proof that 7 is transcendental.

Theorem 4 (Lindemann, 1882) 7 is transcendental.

Proof. Suppose not. Then, o = iw is also algebraic. Let a have degree d
and let @ = aq, ..., aq be the conjugates, and N be the leading coefficient
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of the minimal polynomial of « over Z. Then, by our remark, N« is an
algebraic integer. Since ,
e’ =—1,
we have
(IT+e)(1+e*)---(1+e%)=0.

The product can be written out as a sum of 2¢ terms of the form e’ where
0:€1a1+"‘+6dad, q:O,l.

Suppose that exactly n of these numbers are non-zero and denote them by
B1, ..., Bn. Note that these numbers are the set of roots of a polynomial with
integer coefficients. To see this, it suffices to observe that the polynomial

1 1
H H x— (100 + -+ + €qq))
e1=0 a=0

is symmetric in aq, - - - , g and hence lies in Q[z]. The roots of this polyno-
mial are S, ..., 3, and 0 with multiplicity a = 2¢ — n. Dividing by 2 and
clearing the denominator, we get a polynomial in Z[z] with roots S, ..., Bx.
Now,
(I+e*)(1+e*)---(1+e*)=0
implies
@21 —n)+elr 4+ el =0

With I(¢, f) as in the previous chapter, we consider the combination

K= 1(B1, )+ -+ 1(Bn, )

where
fl@) = N"ar = =GP - (= )",

where p denotes again a large prime. Thus,

K=-2"=n)) f90) =3 > 90,
7=0 7=0 k=1
where m = (n 4+ 1)p — 1. The sum over k is a symmetric function in

NpBi,....,NB,. Noting that Nfi,..., NG, are the set of roots of a monic
polynomial over the integers, we conclude that the summation is a ratio-
nal integer. Moreover, the derivatives fU)(8;) vanish for j < p and the
summation for fixed j > p is divisible by p!. Finally, for p sufficiently large,

FPD(0) = (p = DN (51 B

is not divisible by p. In addition, fU)(0) is divisible by p! for j > p. As in
the previous chapter, let F' be the polynomial obtained from f by replacing
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each coefficient of f by its absolute value. Proceeding as before, we find
that

n
K[ <> |Bkle!™ F(|B4]) < AC?,
k=1
for some constants A,C. On the other hand, K is a non-zero rational
integer divisible by (p — 1)! and hence must be at least as large in absolute

value. Comparing the growth as p tends to infinity, gives us the desired
contradiction. [J

Exercises

1. Let a be an algebraic integer of degree n with conjugates o = arq, ..., Q.
Suppose for k& > 0,

F:F(xla"' y Ly Oy - 7an) S Z[$17"' y Ly 1y - - ,G{n].
Further suppose that F' is a symmetric function in o, - - - , o, With co-
efficients in the ring Z[z1, - - , 2x]. Then show that F € Z[xy,- - , xg]

when k£ > 0 and F' € Z when k = 0.

2. A real number « is said to be constructible if, by means of a straight-
edge, a compass, and a line segment of length 1, we can construct a
line segment of length |a/ in a finite number of steps. Show that if a,
B are constructible, then so are a + 3, « — 3, a8 and «/S for 5 # 0.
Thus, the set of constructible numbers forms a subfield of the reals.

3. Show that if « is constructible, so is \/|a|. [Hint: consider the circle
of diameter |o| + 1 with center (1(1+|al),0) in R? and consider the
intersection of the perpendicular drawn at (1,0) and the circle.]

4. Let F be any subfield of the reals. Call F' x F' the plane of F' and any
line joining two points in the plane of F' a line in F. A circle whose
center is in the plane of F' and whose radius is in F' will be called a
circle in F. Show that a line F' is defined by the equation

ax+by+c=0, a,bcelF
and a circle in F' is defined by the equation
2?4+ y*+ar+by+c=0, abceF.
5. From the previous exercise deduce that any constructible number
must necessarily be an algebraic number. Deduce using Lindemann’s
theorem that /7 is not constructible. Hence, it is impossible to con-

struct using a straightedge and compass a square whose area is equal
to .
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. Show that cos(m/9) is algebraic of degree 3 over the rationals.

. Using exercise 4, show that a constructible number must necessarily

have degree a power of 2 over the rationals. Conclude that 7/3 cannot
be trisected using straightedge and compass.

. Show that if « is constructible, then it lies in a subfield of R obtained

from Q by a finite sequence of quadratic extensions.

. Let p be a prime number. Show that if a regular p-gon can be con-

structed using straightedge and compass, then p — 1 = 2" for some
r. [The converse is also true but more difficult to prove and is a
celebrated “teenage” theorem of Gauss.|



Chapter 4

The
Lindemann-Weilerstrass
theorem

In 1882, Lindemann wrote a paper in which he sketched a general result,
special cases of which imply the transcendence of e and 7. This general
result was later proved rigorously by K. Weierstrass in 1885. Before we
begin, we make some remarks pertaining to algebraic number theory. Let
K be an algebraic number field. The collection of algebraic integers in K
forms a ring, denoted Ok, and is called the ring of integers of K. The
theorem of the primitive element shows there exists a 6 such that K =
Q(0). If 6, ..., are all the conjugates of 6, then one speaks of the
conjugate fields K := Q(#®). This gives rise to an isomorphism o; of
fields K ~ K given by the map ¢;(8) = 69, which is then extended to
all of K in the obvious way.

Theorem 5 (Lindemann-Weierstrass, 1885) If aq, ..., a5 are distinct alge-
braic numbers, then e*1,...,e% are linearly independent over Q.

Proof. Suppose that we have
die®t + -+ dge® =0, (4.1)

for some algebraic numbers dy, ...,ds not all zero. By multiplying an ap-
propriate rational integer, we may assume that d, ..., ds are algebraic inte-
gers. Further, multiplying the above equation with equations of the form
Zj’:l o,(d;)e® for all the embeddings oy of the field Q(dy, - ,ds), we
may assume a relation of the form

alle"yl + -+ ane’yn = O7 (42)
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where a;’s are rational integers and ;s are distinct algebraic numbers. We
may further assume that each conjugate of 7; is also included in the above
list of algebraic integers. Now if we let K to be the algebraic number field
generated by 71, ..., 7, and all their conjugates, then it is natural to consider
the “conjugate” functions for real variable t,

(0 ;
Ai(t) = ar€ P44 ane

Since the ~; are distinct, these functions are not identically zero (see Exer-
cise 1). If we let

B(t) = HAz(t) = bleﬁlt + .-+ bMe,BMt’

where the product is over all the conjugate functions, then it is clear that
the Taylor coefficients of B(t) are symmetric functions in all of the con-
jugates and so are rational numbers by our earlier remarks. Moreover,
the b; are rational integers not all equal to zero. Let N be an integer so
that Ny, ..., NGy are algebraic integers. We now proceed as in the earlier
chapters. Consider the combination

M
Jr =Y _0pI(Br, fr)
k=1

where

_ p (@ = B)P (@ = o) - (x = By
fT(x)_N (I_BT)

for 1 <r < M. It is clear that f(x) = fi(z) + -+ + fam(x) is invariant
under Galois action and hence has rational integer coefficients. Now, using
(2.1), we see that since B(1) = 0, we have

M m

Je==Y > f9B),
1

k=1 ;=0

where m is the degree of f.. Arguing as in the earlier chapters, we note
that the product Ji - - - Jps is a Galois invariant algebraic integer, hence an
integer. Further, it is divisible by (p — 1)!, but not by p for suitably chosen
large p. In the other direction, since each |J,.| < (¢,)P for suitable ¢,, we
have

(p—1)1<C”

for some constant C. This gives a contradiction for large enough p which
completes the proof. [J

Thus, the Lindemann-Weierstrass theorem generalizes both the Hermite
and Lindemann’s theorems. Indeed, choosing a; = 0 and ay; = 1, we
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retrieve Hermite’s theorem that e is transcendental. Choosing a; = 0 and
ag = im, we deduce Lindemann’s theorem. We also have the following
corollaries.

Corollary 6 If a # 0 is algebraic, then e® is transcendental.

Proof. Take oy = 0 and as = o in Theorem 5. [

Corollary 7 If a # 0,1 is algebraic, then log « is transcendental.

Proof. This is immediate from the previous corollary. [J

Recall that a set of n complex numbers 1, ..., B, are algebraically inde-
pendent if there is no non-zero polynomial P(x1, ..., z,) € Z[z1, ..., 5] such
that

P(B1,..., Bn) = 0.
We can deduce from Theorem 5 the following assertion.
Theorem 8 If ay,...,a, are linearly independent algebraic numbers over
Q, then
eal , , ean

are algebraically independent.

Proof. Suppose that

are algebraically dependent. Then we have
E iy .. g, €t Himan —
1eerin

for certain integers a;, .. ;
yeees
Theorem 5, the numbers

with not all a;,.... 4, equal to zero. Then, by

n n

Z‘1041 + -+ inan

cannot all be distinct. Thus, a;, ..., a,, are linearly dependent over Q. [J

S. Schaunel has conjectured that if «a, ..., a,, are linearly independent
over QQ, then the transcendence degree of the field generated over Q by

Qs oeny Oy, €91 L, €Y7

is at least n. Omne consequence of this conjecture is that e and 7 are
algebraically independent. To see this, consider the field generated by
1,27, e,e?™ over the rationals. Schaunel’s conjecture predicts that the
transcendence degree of this field is at least 2, which means that e and 7
are algebraically independent.

Schanuel’s conjecture is one of the central conjectures in the theory of
transcendental numbers. We will discuss about this conjecture and its many
implications in a later chapter.
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The Lindemann-Weierstrass theorem

Exercises

. If aq, ..., a, are distinct complex numbers, show that the function

a1€a1t+.”+an6ant

is not identically zero whenever the a;’s are not all zero.

. Show that for any non-zero algebraic number, sin a, cos «, tan « are

transcendental numbers. Show the same is true for the hyperbolic
functions, sinh o, cosh a and tanh a.

. Show that arcsin « is transcendental for any non-zero algebraic num-

ber «.

. If ¢, cq, ... is a periodic sequence of algebraic numbers not all zero,

then show that the series
o n
z
D ey
n=0 !

is transcendental for any non-zero algebraic value of z.

. Show that at least one of 7 + e , we is transcendental.



Chapter 5

The maximum modulus
principle and its
applications

The maximum modulus principle constitutes an essential tool in transcen-
dence theory. Let us begin with a proof of this fundamental result. We fix
the convention that a function is analytic in a closed set C' if it is analytic
in an open set containing C. A region is an open connected set. Let us
begin with the following weaker version of this principle.

Theorem 9 Let f(z) be analytic in an open set containing a region R and
its boundary OR, which we assume to be a simple closed rectifiable contour.
If |f(2)| < M on OR, then |f(z)] < M for all z € R.

Proof. (E. Landau) If z € R, then by Cauchy’s theorem applied to the
nth power f”,

n 1 fM(w)dw
) = g [ IO
T Jop W —2
so that
|f" ()] < KM™,
where
L[ |dw
21 Jop|lw—z|’

Taking n-th roots, and letting n tend to infinity gives the result. O

We now consider the following version of the maximum modulus prin-
ciple. Again, the statement is not the most general, but suffices for our
applications.
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Theorem 10 (The maximum modulus principle) If f is a non-constant
analytic function in a region R, then the function |f(2)| does not attain its
mazimum in R. That is, if for some zo € R, |f(2)| < |f(20)| for all points
z € R, then f is constant.

Remark. In other words, the maximum of a non-constant analytic function
in a region R and its boundary is attained on the boundary.
Proof. We give two proofs of the theorem. For the first proof, we use the
fact that a non-constant analytic map is an open map. Let |f(z0)] = M.
Since |f(2)] < |f(z0)| for all points z € R, the image set f(R) is contained
in the closed disc {z : |z| < M} and intersects the boundary. Hence f(R)
is not open, a contradiction.

For the second proof, for the point zy in R, consider the Taylor expansion
of f about zg:

oo
f(z0 +7e?) = Z anre™?.
n=0

Parseval’s formula (or just by noting that term by term integration is al-
lowed as the series converges normally for a fixed r) yields that

1 [ 012 -
|f(zo + rew)| df = Z |an|2r2".

21
0 n=0

Thus, if zg is a point where the maximum is attained, we have |ag| = M
and
M? = Jag|? < |aof® + |a1 [*r® + - < |f(20)* = M?,

so that we are forced to have a1 =ay =--- =0 and f is constant. [J

The maximum modulus principle is often used to prove the fundamental
theorem of algebra.

Corollary 11 (The fundamental theorem of algebra) If n > 1 and
f(2) =anz" +an_12"""+ - +ar1z+ag

is a polynomial with complex coefficients and a,, # 0, then f has precisely
n roots over the complex numbers.

Proof. It suffices to show that f has at least one root for then, we can
apply the division algorithm to reduce the degree of f and apply induction.
If f(z) # 0 for every complex value of z, then 1/f(z) is entire. We will
apply the maximum modulus principle to 1/f(z). Clearly, 1/f(z) tends to
zero as |z| tends to infinity. Thus for any given «, there exists an R such
that
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for |z| > R. But we can choose R sufficiently large so as to ensure that
|a] < R. This violates the maximum modulus principle applied to the
non-constant function 1/f(z). Thus f(z) has a root in C. O

The following two corollaries suggest that the inequality in the maximum
modulus principle can be improved if we have knowledge of zeros of the
function lying inside a disc of radius R.

Corollary 12 (Schwarz'’s lemma) Suppose that f(z) is analytic in the closed
disc |z] < R and f(0) =0. Then in this disc,

|f(2)] < [ fIr(I2]/R),
where | f|r is mazimum modulus of f on the circle of radius R.

Proof. The function g(z) = f(z)/z initially defined for 0 < |z|] < R can
be analytically extended to |z|] < R. Applying the maximum modulus
principle to g gives the result immediately. [J

Corollary 13 (Jensen’s inequality) Let f be analytic in |z] < R and f(0) #
0. If the zeros of f in the open disc are z1, 22, ..., 2N, with each zero being
repeated according to multiplicity, then

FO] < [fIr(l21- - 2n|/RY).

Proof. It is easily seen (see Exercise 1 below) that

R? — 2z,

R(z — zp)

has absolute value 1 for |z| = R. Thus, the function

R? — 27,

N
9(z) = f(2) H m

is analytic on the closed disc of radius R and

l9(2)| = [£(2)]

for |z| = R. The maximum modulus principle implies

l9(2)| < [fR-

Putting z = 0 gives the result. O
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Corollary 14 Let f be as in the previous corollary. Let v(r) = v(f,r)
denote the number of zeros of f in the open disc |z| < r. Then,

R

vz

/ ) 12 < 1og |13 1o | F(O).
0

Proof. Since

RN MR dr R y(z)
log — = g / —:/ —=dz
g|ZIZN| Izn| X 0 €T

n=1

and the result is now immediate from the previous corollary. [J

One of the main consequences of these results is a relationship between the
number of zeros in a disc and the rate of growth of the function. We say
that an entire function f is of strict order < p for a positive real p if there
is a constant C' > 0 such that

|f(2)] < CE’,  whenever|z| < R.

If f is as above, then the infimum of all p for which the above condition
holds is called the order of f.

Corollary 15 If f not identically zero is of strict order < p, then the
number of zeros of f inside the disc of radius R > 1 1is

< R?,
where the implied constant depends only on f but not on R.

Proof. Suppose that f(z) has a zero of order n at z = 0. Then, g(z) =
f(z)/z™ is regular at z = 0 and g(0) # 0. Applying the previous corollary,
we see that

v(g, R)log2 < log|glar — log [g(0)].
Thus,
v(g, R)log2 + nlog R < log |f|2r — log |g(0)]

from which the result easily follows. [

Exercises
1. Show that for |w| < R, the quotient

R? — 2w
R(z —w)

has absolute value 1 for |z| = R.
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. Let f(%) be a function analytic in |z| < R and non-vanishing there.
Show that the minimum modulus of f, min|,<g |f(2)| is attained on
the boundary.

. Let f(z) be analytic in |z| < R with R > 0. Show that
£ O)] < nllf|r/ R

. Deduce from the previous exercise that a bounded entire function is
constant. (This is a famous theorem of Liouville.)

. Deduce the fundamental theorem of algebra from Liouville’s theorem.
[Hint: if P(z) is a polynomial, then consider 1/P(z).]

. Suppose f(z) is analytic in |z| < 1 with |f(2)] < 1 for all |z| < 1 and
f(0) = 0. Then show that |f’(0)] < 1 with equality if and only if
f(2) = cz where |¢| = 1.

. If f and g are entire functions of order p; and ps respectively, show
that the function fg is of order p with p < max(p1,p2). Further, if
p1 7 p2, then show that fg has order equal to max(p1, p2).

. Let f and g be as in the previous exercise. What can you conclude
about the order of f + g7
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Chapter 6

Siegel’s lemma

The following lemma is a fundamental tool in transcendental number the-
ory.

Lemma 16 (Siegel) Let a;; be integers of absolute value at most A, for
1<i<r1<j<n. Consider the homogeneous system of r equations

n
Zaijxj:O, ].SZST
j=1

in n unknowns. If n > r, there is a non-trivial integral solution satisfying
‘xi‘ S B7

where ‘
B =2(2nA)="—.

Proof. Let C' = (a;;) be the matrix associated to the system of equations.
Then C maps R™ into R". Moreover, it maps Z"™ into Z". Let H > 1
be a real number and Z™(H) be the set of vectors in R™ with integral co-
ordinates of absolute value at most H. Then clearly C maps Z"(H) into
Z"(nAH). If

(2nAH +1)" < (2H)™,

then the map cannot be injective. In particular, if
(2H)V"™ > (2H)(2nA) > 2nAH + 1,

then, there will be at least two distinct vectors mapping to the same point.
The difference of these two vectors gives a solution to the homogeneous
system satisfying

|33‘Z| < 2H.

Choosing H = (2nA)=—= gives the result. [
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We will need a generalization of this lemma to algebraic number fields.
To this end, we review some basic algebraic number theory. Let K be an
algebraic number field. If & € K is an algebraic number, then consider the
set of all integers m such that ma is an algebraic integer. The set of such
integers contains a non-zero integer by our earlier remarks (see chapter 3).
Moreover, it is an ideal of Z and hence principal. The positive generator
of this ideal will be called the denominator of a and denoted d(«). We say
d is the demominator of the algebraic numbers aj, ..., a,, if d is the least
common multiple of the numbers d(ay), ..., d(ay,). We will also define the
height of «, denoted H(«), to be the maximum absolute value of all its
conjugates.

The second fact we need is that the ring of integers Ok of a number
field K of degree t has an integral basis. That is, there are algebraic integers
w1, ...,wt € Ok such that every element of O can be written as

ajwy + -+ apwy,

Wit_h a; € Z. Let 01, ..., 0t be the embeddings of K in C and for any w € K,
wl) = o;(w) denote its j-th conjugate. The ¢ x ¢ matrix whose (4, j)-th
)

entry is w;”’ is easily verified to be invertible (see Exercise 1 below).

Lemma 17 Let oy; € Ok be algebraic integers of height at most A for
1<i<nr1<j<n. Consider the homogeneous system of r equations

n
ZO@J‘.’L‘]‘:O, ISiST
j=1

in n unknowns. If n > r, there is a non-trivial Ok -integral solution satis-

fying

where
B =2(CnA)",

with C' is an absolute constant depending only on K.

Proof. Let t be the degree of the number field K. We write each of the
numbers oy;; in terms of an integral basis:

t
Qi = g AijpWk,  Gijk € L.
k=1

From these equations, we also see that by inverting the ¢ x ¢ matrix
0
(@),
we can solve for the a;;i. Thus, we see that

|aijk\ <CA
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where C is a constant depending only on K (or more precisely, on the
integral basis w;’s and the degree t). We write each x; as:

Ty = E Yjewe,
¢

so that the system becomes

t t
Z Z aijryjewrwe = 0

1k=1/4=1

NE

<.
Il

with y;¢ to be solved in Z. We can write

t
Wrwp = E ChtmWm,s  Ckem € Z.

m=1
Thus we have,
t n t
Z Z Z ik YeChemwWm = 0.
m=1j=1 k,¢=1
Since the w,,’s are linearly independent over Q, the original system is
now equivalent to a new system of equations with ordinary integer coeffi-
cients in the unknowns y;¢. More precisely, we get the following homoge-
neous system of rt equations
n t

j=1¢=1

M)~

QijkChem¥Yje =0, 1<i<r, 1<m<t

=
Il

1
in the nt unknowns y;¢,. We can now apply the previous lemma and obtain
the desired result. [

We will need one more variation of the previous lemma that will allow

the coeflicients to be algebraic numbers instead of algebraic integers.

Lemma 18 Let o;; € K be algebraic numbers of height at most A for
1<i<r, 1<j<n. Consider the homogeneous system of r equations

n
Zaija:j:(), ].SZST’

in n unknowns. Let d; be the denominator for the coefficients of the i-th
equation and let d be the maximum of the d;’s. If n > r, there exists a
non-trivial Ok -integral solution satisfying

where ‘
B =2(CndA)",

with C' an absolute constant depending only on K.



32 Siegel’s lemma

Proof. We simply multiply the i-th equation by d; and then apply the
previous lemma. [J

Exercises

1. Let K be an algebraic number field and wy,...,w, an integral basis

for the ring of integers Ok . Show that the matrix (w§i)) is invertible.

2. Prove the following sharpening of Siegel’s lemma: let a;; € Z be
integers satisfying

n
Z|a1‘j\ <A4;, 1<i<sr
=1

Consider the homogeneous system of r equations
n
Zaijmj:O, 1§Z§7“
Jj=1

in n unknowns. If n > r, there is a non-trivial integer solution satis-
fying

where
B=(A;- ..Ar)l/(n—r)_



Chapter 7

The six exponentials
theorem

In this chapter and subsequent chapters, we will show how to use Siegel’s
lemma and the maximum modulus principle to prove transcendence results.
We shall begin with the celebrated six exponentials theorem. The proof of
this theorem involves the notion of norm of an algebraic number which we
recall. Let K be a number field and ¥ be the set of embeddings of K into
C. Then for any a € K, we define the relative norm Ny g(a) of o to be

Nkso(e) = [] o(@).

cEX

We refer N(a) = Ng(a),q() to be the norm of . It is clear that

Nx/g(a) = N(a)?

where d = [K : Q(«)]. When « is an algebraic integer, its norm is a rational
integer. Furthermore, when a # 0, we have the obvious but important
inequality:

1< [Nk /g(a)| < H(a)"|al,

where n = [K : Q] and H(«) is the height of a.

Theorem 19 Let x1, x5 be two complex numbers linearly independent over
Q. Let y1,y2,y3 be three complex numbers linearly independent over Q.
Then, at least one of the siz numbers

18 transcendental.
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Remark. There is the famous four exponentials conjecture of Schneider
that says the theorem should still be valid if y1, y2, y3 are replaced by y1, 2
linearly independent over Q. We refer to the interested reader a paper of
Diaz [39] where he investigates the interrelation between values of the mod-
ular j-function (which we shall be defining later) and the four-exponential
conjecture.

Proof. Suppose that the conclusion of the theorem is false. Let K be an
algebraic number field containing the numbers

exp(ziy;), 1<i<2, 1<j<3.

Let d be the common denominator for these numbers. We will consider the
function

F) = 3 aelintind,
i,j=1
where the a;; € Ok will be suitably chosen so that F' has a zero at the
points
kiyr + kaya + k3ys,

with 1 < k; < n and where n is a parameter also to be suitably chosen.
This amounts to solving n3 equations in 72 unknowns. To apply Siegel’s
lemma, we need 72 > n3. The coefficients of the equations are the algebraic
numbers

exp((iz1 + jz2)(k1y1 + kaya + k3ys))

with denominators bounded by d°". By Siegel’s lemma, we can find alge-
braic integers a;; of height at most

2(Or2d6rnecorn) ﬁ .
We will choose 72 = (4n)® so that the a;;’s have height at most ecin™”.
Since x1, 2o are linearly independent over Q, we see by Exercise 1 (below)
that F is not identically zero. Moreover, F' takes values in K for all integral
linear combinations of y1, Y2, y3. Since F' is of strict order < 1, not all such
integral linear combinations can give rise to zeros of F' since the number
of such zeros in a circle of radius R grows like R? whereas the number of
possible zeros of F grows like R (by Jensen’s theorem discussed in Chapter
5). Let s be the largest positive integer such that

F(k1y1 + koyo + ksys) =0, foralll <k; <s.
Then, by construction, s > n. Let
w = kyy1 + koys + k3ys,

be such that F(w) # 0, with some k; = s+ 1 and 1 < k; < s+ 1 for all 4.
Let us observe that
d6r(s+1)F(w)
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is therefore a non-zero algebraic integer. Hence, the absolute value of its
norm is at least one. In addition, we have the height estimate

log H(F(w)) < n®? + (s + 1)r < s°/2.

This means 52
|[F(w)| > C™*

for some positive constant C. We now show that this is a contradiction.
Clearly,

Fw) = 1m F(:) [ (w e kgyg))
25w z — (kiy1 + kayo + kays) )
1<k1,k2,k3<s

There are s* terms in the product and the function on the right hand side is
entire. We want to estimate the size of F(w). We can apply the maximum
modulus principle on the circle of radius R to the entire function on the
right hand side. We will choose R so as to ensure that |w| < R and

|z — (kiy1 + kaya + ksys)| > R/2

for all z on the circle. Thus,

[F(w)] < |Flr(Cis/R)",
for some constant C7 > 0. But an easy estimation gives

|F|p < ec1n5/2+cerr2’
for some positive constants ci, co. Putting everything together gives
log |F(w)| < n®? + 7R+ s>log(s/R).

We will choose R = s%/2 . This contradicts our earlier estimate that

log |F(w)| > —5°?1og C,

if n is taken sufficiently large. [J

Exercises

1. If 1,29, ..., x, are linearly independent over Q, show that the func-

tions
a:lt wzt

Tnt
, € s ,e”

e

are algebraically independent over the complex numbers. [Hint: use
Exercise 1 of Chapter 4.]
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. Show that the functions ¢ and e’ are algebraically independent over

the field of complex numbers.

. Show that at least one of 27,3™,5™ is transcendental.

. Let B € C and suppose that there are three multiplicatively indepen-

dent algebraic numbers a1, as, a3 such that af , ozg , ag are algebraic.
Show that (3 is rational.

. If p1,p2, p3 are three distinct prime numbers such that p{, p3, p5 are

integers, then show that x is a non-negative integer.

. Imitate the above proof for the four exponential conjecture and find

out where the proof breaks down.

. Let z € C with |z| € Q such that €2 € Q. Assuming the four

exponential conjecture, deduce that z € Q.



Chapter 8

Estimates for derivatives

In numerous transcendence proofs, it is convenient to estimate derivatives
of polynomials evaluated at special points. To this end, we consider a more
general setting.

We introduce some terminology. If P is a polynomial in several vari-
ables, we will write size(P) for the maximum of the absolute values of its
coefficients. Given two such polynomials, P and @, with the latter having
non-negative coefficients, we will say that @ dominates P if the coefficients
of each of the monomials in P is dominated by the corresponding coeffi-
cient of Q. We will write P < @ if ) dominates P. It is easily verified
that if Py -<Q1 and Py -<Q2, then P + Ps -<Q1+Q2 and P, P, -<Q1Q2.
Moreover, if D; is the derivative operator with respect to the i-th variable,
and P < @, then D;P < D;Q. If the total degree of a polynomial P in n
variables is r, then

P <size(P)(14+x1+ -+ x,)".

We also need some facts about derivations. Recall that a derivation
D of aring R is a map D : R — R such that D(z +y) = D(z) + D(y)
and which satisfies D(zy) = D(z)y + «D(y). Sometimes, we write Dz for
D(z) when the meaning is clear. For instance, if R is the polynomial ring
K|[z1,...,x,)], then the partial derivative 9/Jz; is a derivation.

If R is an integral domain, and K its quotient field, then a derivation
D of R can be extended in the usual way by setting

vD(u) — uD(v).

D(u/v) = 3

(%

If R is a ring with derivation D, then we can define a derivation on the
polynomial ring R[z1, ..., x,] by mapping the polynomial

flxe, . zn) = Za,’hm,inxil e
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to

It is easily verified that this is a derivation (see Exercise 2 below).
If L = K|[xy,...,2,] , then the usual partial derivatives

0

i (%ci’

are derivations which are trivial on K. Conversely, if D is a derivation of
L which is trivial on K, then we can write it as a linear combination of the
D;’s. Indeed, we have

D= D(x;)D;,

since any such derivation is determined by its values on the polynomials x;.
In fact, an easy induction shows that

D(a}") = ma" ™' D(xy),

and

D(at---ayr) =) Dj(at - ay7) D).

We apply these observations in the more familiar context of C(x1, ..., ).
This shows that if Py, ..., P, are arbitrary polynomials, then there exists a
unique derivation D* such that D*(z;) = P; which is trivial on C.

Lemma 20 Let K be an algebraic number field and fi,..., fn complez-
valued functions. Let w € C be such that the functions fi,..., fn are holo-
morphic in a neighbourhood of w and that the derivative D = d/dz maps the
ring K[f1, ..., fn] into itself. Assume that f;(w) € K for 1 <i <mn. Then
there exists a number C1 having the following property. Let P(x1,...,Zy)
be a polynomial with coefficients in K and of degree deg(P) < r. If
f=P(f1,.., [n), then we have for all positive integers k,

H(D* f(w)) < size(P)kICF+T.

Moreover, the denominator of D¥ f(w) is bounded by d(P)C¥", where d(P)
1s the denominator of the coefficients of P.

Proof. There exist polynomials P;(x1, ..., x,) such that

Dfi = Pi(f1, -, fn)-

Let § be the maximum of their degrees. By our earlier remarks, there is a
unique derivation D* such that

D*(J,‘Z) = Pi(Il, ceey a:n).
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Then, for any polynomial P, we have
8
D*P(xq,...,x ZP (z1,...,x Pz, ...,xy).

The polynomial P is dominated by
size(P)(1 4+ x1 + -+ xp)",
and so

0
&ni

P(zy,...,zy)

is dominated by
size(P)r(1+ax1+ -+ x,)".

Now each P; is dominated by
size(P)(1 4z + -+ x,)°.
Thus, D*(P) is dominated by
size(P)Cr(1 4+ 2y + - +x,)" 2,
where

C= Zsize(P)
i=1

Now we argue similarly for D*?(P). We have

0
D*2P(xy,...,x ZP T1, .., axZD*P(xl,...,xn).
Since
a * . r46
Bx-D (P) <size(P)r(r+0)C(1+z1+ - +x,)""°,
we obtain

D*2(P) < size(P)r(r 4+ 0)C*(1 + x1 + - + 2,)" T2,
Proceeding inductively, we see that
D**(P) < size(P)C*r(r +8) - (r+ (k — 1)8) (1L 4+ @1 + -+ - ,) .
Observing that for § > 0 (for § = 0, the estimates are even easier),

(T +kk) K < 6k2T+kk|

r(r+8)- (r+(k—1)0) <5 (r+1)---(r+k) < ¥
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we obtain an inequality of the form
D**(P) < size(P)Cy T EI (1 + 2y + - 2,)"TFO.

If we plug in the values f;(w) for x; in the above, we obtain a bound for
D**(f(w)) exactly of the form as required in our lemma. To prove the
lemma, we observe that the map z; — f; is a homomorphism from the ring
Klzy,...,x,] to K[f1,..., fn] which takes the derivation D* to D. Thus,
D**(f(w)) = D* f(w) and since all these numbers lie in the fixed number
field K, the lemma follows. The assertion about the denominator estimate
follows in a similar inductive style. We leave this as an exercise to the
reader. [J

Exercises

1. Let R be an integral domain and D a derivation of R. Show that the
map D extends to the field of fractions of R by the definition:

yD() ~ aD(y)

D(z/y) = 7

2. Let D be a derivation on the ring R. Show that the map f — fP
(defined in the begining) is a derivation on the ring R[z1, ..., Z,].

3. If K is a field, show that the set of all derivations of K, denoted
Der(K) forms a vector space over K if we define

(D14 Ds)(z) := D1(z) + Do(x), (aD)(x) := aD(z),

for D1, D2, D € Der(K), anda € K. Show further that [D:, Dy :=
DDy — Dy Dy is again a derivation of K.

4. With notation as in the previous exercise, show that
[[D1, D2], D3] + [[D2, D3], D1] + [[Ds, D1], D2] = 0,

for any three derivations Dj, Do, D3 of K. (This is equivalent to
saying that Der(K) is a Lie algebra.)



Chapter 9

The Schneider-Lang
theorem

In 1934, A.O. Gelfond and T. Schneider, independently, solved Hilbert’s
seventh problem. This problem predicted that if o and 3 are algebraic
numbers with o # 0,1 and § irrational, then o is transcendental. In
particular, the number 2V2 i5 transcendental as well as the number e’, as
is seen by taking 8 = i and o« = —1. Another consequence of the theorem
is the transcendence of numbers such as

log o
log 8

whenever log a and log 8 are linearly independent over the rationals.

In 1962, Serge Lang derived a simple generalization of the Schneider
method and it is this result we will discuss here. In the subsequent chapters,
we will derive further corollaries of the theorem.

Recall that an entire function f is said to be of strict order < p if there
is a constant C' > 1 such that

f(z)] < CT,

whenever |z| < R. A meromorphic function is said to be of strict order < p
if it is the quotient of two entire functions of strict order < p.

Theorem 21 (Schneider-Lang) Let K be an algebraic number field. Let
f1(2), .., fa(z) be meromorphic functions of strict order < p and assume
that at least two of these functions are algebraically independent. Suppose
further that the derivative D = d/dz maps the ring K[f1, ..., f4] into itself.
If wy, ..., wy, are distinct complexr numbers not among the poles of the f;’s
such that f;(wg) € K for all1 <i<d,1<k<m, thenm <4p[K : Q).
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Proof. Let f,g be two functions among fi, ..., fg which are algebraically
independent. Let

r
F = Z aijfzgj.
i,j=1

We wish to select coefficients a;; € Ok such that
DFF(w,) =0, 1<v<m

and 0 < k < n — 1. This amounts to solving the linear system of mn
equations in r2 unknowns:

> ai D (f'g7) (w,) = 0.

ij=1

Notice that, by hypothesis, the numbers

k

o k . L

DHI'g ) wn) = 3 (t) D () (w,) D~ (g7 (w,)
t=0

are algebraic and lie in K. By Lemma 20, we can estimate the size of our

coefficients. Chosing 72 = 2mn, Siegel’s lemma assures that we can find

the desired a;; € Ok with
H(aij> < enlogn+0(n+7‘).

Since f and g are algebraically independent over K, our function F' is not
identically zero. We let s be the smallest integer such all the derivatives
of F' up to order s — 1 vanish at the points wy, ..., w,, but such that D*F
does not vanish at least at one of the w,, say wi. Then, s > n. Again, by
Lemma 20, we have an estimate for

H(DSF(wl)) <e? log s+O(s)’

slog s+0O(s

and we also know that it has denominator bounded by e ). Since

D*F(w;) # 0, from the height estimate, we deduce
‘Dé(F(wﬁ)l > e—[K:Q]slogs-‘,—O(s).

On the other hand, we can deduce an upper bound for this quantity as
follows. Let h be an entire function of order < p so that h(w;) # 0 and

h(2)*"F(z)

D= G L

(wl - wl/)s

is entire. Let us note that

li =
s h(z)?r s!
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because

D*(F(w
is its Laurent expansion about z = w;. We note that to estimate | D*(F(w1))|,
it suffices to estimate G(z) on the circle |z| = R which encloses w;. For
this, we apply the maximum modulus principle to G(z) on the circle with
radius R = s'/?7 (suitably large) to obtain

D3(F o
| ( s'(wl))| < CT‘R R™™S.

Since R = s'/%7 we get an upper bound of

67ms(log s)/2p+slog s+rsl/2cl.
Recalling that 7 = O(n'/?), we obtain a contradiction if m > 4p[K : Q).
This completes the proof. [

We now derive some important corollaries from this theorem.

Corollary 22 (Hermite-Lindemann theorem) Let « be a non-zero alge-
braic number. Then, e is transcendental.

Proof. Suppose not. Let K be the field generated by a and e® over Q.
Let fi(z) = z and f2(z) = e**. Then, the ring K|[fi, f2] is mapped into
itself by the derivative map. Moreover, by exercise 2 in Chapter 7, the two
functions are algebraically independent. The theorem indicates that there
are only finitely many complex numbers w such that fi(w), fo(w) € K.
But this is a contradiction since we may take the infinite set w =1,2,3, ...
to derive a contradiction. [J

Corollary 23 (Gelfond-Schneider theorem) Let a, 8 be algebraic numbers
with a # 0,1 and f irrational. Then, o is transcendental.

Proof. Suppose not. Let K be the field generated by a, 3, a” over Q. We
apply the theorem to the two functions f1(z) = €?, fa(z) = €°*. Again, the
derivative maps the ring K|[f1, f2] into itself. By exercise 1 of Chapter 7,
we conclude that f; and fo are algebraically independent. Thus, f; and fo
can take on values in K simultaneously at only a finite number of complex
numbers. But this is a contradiction if we take z = loga,2log e, .... O

In the subsequent chapters, we will discuss further applications of this
important theorem to the theory of elliptic functions, abelian functions,
and modular functions.
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The Schneider-Lang theorem

Exercises

. If P(z) is a polynomial of degree d, what is the order of the function

eP(#)?

. Prove that if f is an entire function of order p, then its derivative f/

has also order p.

. Let a, 8 be algebraic numbers unequal to 0 or 1. Show that

log o
log 8

is either rational or transcendental.

. If @, B are non-zero algebraic numbers, and log «, log 8 are linearly

independent over QQ, then they are linearly independent over Q.
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Elliptic functions

Let wy,ws be two complex numbers which are linearly independent over the
reals. Let L be the lattice spanned by wi,ws. That is,

L = {mwy + nws : m,n € Z}.

An elliptic function (relative to the lattice L) is a meromorphic function f
on C (thus an analytic map f : C — CPP;) which satisfies

f(z+w) = f(z), forallwe L,

and z € C. The value of such a function can be determined by its value on
the fundamental parallelogram:

D ={sw +twy: 0<s,t<1}.

Any translate of D is referred to as a fundamental domain for the ellptic

functions relative to L. The set of all such elliptic functions (relative to L)

forms a field and L is called the period lattice or the lattice of periods.
The Weierstrass @-function associated to L is defined by the series

1 1 1
=5+ (Gt
welL’
where L’ denotes the set of non-zero periods. The associated Fisenstein
series of weight 2k is
Gon(L) =Y w™?.
welL!

Theorem 24 Let L be a lattice in C. The Eisenstein series Goy is abso-
lutely convergent for all k > 1. The Weierstrass p-function associated to L
converges absolutely and uniformly on every compact subset of C\L. It is
a meromorphic elliptic function on C having a double pole at each point of
L and no other poles.
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Proof. It is easy to see that
#{weL:N<|w<N+1} =O0(N).

Hence,

o0

1 1 > 1
> omsY gmteels NEll<N+) < gan
weL:|w|>1 N=1 N=1

from which the first assertion follows. To deal with the convergence of the
second series, we split the series into two parts:

>+ >
0<|w|<2]z]  |w|>2|z]
The first sum is a finite sum by our observation above. For the second sum,
we note that

1 1

G-wp? W]

22w — z)

10|2|
— |w|3 )
which converges by the first part of our theorem. Thus the defining series
of the Weierstrass p-function converges absolutely and uniformly on every

compact subset of C\L. This proves that p(z) is analytic in the region
C\L. Further, we can compute its derivative and find that

=2

from which it is clear that @'(z) is an elliptic function. Thus,

w?(z — w)

¢'(z+w) =¢'(2),

and integrating this, we obtain

p(z +w) = p(2) + c(w),

for some constant ¢(w) which is independent of z. Putting z = —w/2 and
noting that p(z) is an even function, we find that ¢(w) = 0. Finally, the
series representation clearly shows the location and multiplicities of the
poles. This completes the proof. [

The next theorem describes a fundamental algebraic relation between
©(z) and ¢'(z).
Theorem 25 The Laurent series for p(z) about z = 0 is given by

oo

1
p(z) = ; + I;(Qk’ + 1)G2k+222k.

Moreover, for all z € C, z ¢ L we have
0 (2)? = 4p(2)® — 60G4p(2) — 140Gs.
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Proof. We begin by observing that

oo
E 2=
n=0

for |z| < 1. Upon differentiating both sides, we find that

1
Z”Z =T

Thus,

o0

(1—2)72-1= Z(n +1)z"

n=1

a fact we will use below. Let r = min{|w| : w € L'}. Then, for 0 < |z| < r,
we can write

= o = w1 ) - inﬂ 2 fu 2

(z—w)? w?

Summing both sides of this expression over w € L', we obtain
1 o0
-5 = Z Z(n +1)2™ fw" T2,
weL’ n=1
Interchanging the summations on the right hand side and noting that for

odd n > 1, the sum

weL’

(because both w and —w are in L'), we obtain the first assertion of the
theorem. To prove the second assertion, we differentiate the Laurent series
to get

©'(2) = —2273 + 6G42 +20G62> 4 -+ - .

Squaring this, we obtain
O (2)? =427% —24G4272 — 80Gs + - - - .
Cubing the p-function, we get

0%(2) = (7% +3Ga2® +5Gez" +---)°
=20%49G2724+15Gg+--- .

Thus, the function

f(2) = ¢'(2)% — 4p(2)® + 60G4p(2) + 140G
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is holomorphic at z = 0 and vanishes there. Since f(z +w) = f(#) for all
w € L, we have that f vanishes at all points of L. But it is also an elliptic
function which is holomorphic outside of L. It follows that f is holomorphic
on the fundamental parallelogram D and thus is an entire function. Since
the closure of D is compact, f is a bounded entire function. By Liouville’s
theorem, f is constant. Since f(0) = 0, this constant must be zero. This
completes the proof. [J

The preceding theorem shows that the points (p(z2), p'(2)) for z € C\L
lie on the curve defined by the equation

y? = 42® — gow — g3,
where
go = 60G’47 gs = 140G6.
Such curves are called elliptic curves. The cubic polynomial on the right
hand side has a discriminant given by

A = g5 —27g3.

We want to show that the converse is also true. Namely, given (z,y) € C?
lying on the curve, we can find z such that z = p(z) and y = p/(2). Indeed,
if the equation p(z) —x = 0 has no solution, then 1/(p(z) — z) is an
elliptic function which is holomorphic on L. By periodicity, we see that it
is entire and bounded. By Liouville’s theorem, it must be a constant, a
contradiction since g(z) is not a constant function. Hence, y = +¢'(z) and
since ¢'(z) = —p'(—2), we may adjust the sign of z appropriately so as to
ensure that (z,y) = (p(z), ©’'(2)). This proves:

Theorem 26 Let L be a lattice. Let go, g3 be defined as above. Then, all
the complex solutions of the equation

y? =42® — gow — g3

are given by (p(z), 9'(2)) where g is the Weierstrass p-function attached to
L and z ranges over all the complex numbers in C\L.

Let us now prove the following elementary, but crucial lemma:

Lemma 27 Let f be an elliptic function associated to the lattice L, and
let resy, f denote the residue of f at z = w. If D is a fundamental domain
of f whose boundary 0D does not contain any pole of f, then

Z res,, f = 0.

weD

Further, if ord,, denotes the order of f at z = w and 0D does not contain

a zero of f, then
Z ord, f = 0.

weD
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Proof. Let D be a fundamental domain whose boundary does not contain
any pole of f. By Cauchy’s theorem, we have

f(z)dz = 2mi Z res,, f.

oD weD

The periodicity of f shows that the line integrals along the opposite sides
of the parallelogram cancel. This proves the first assertion. The second one
follows on applying the first assertion to the elliptic function f/(z)/f(z). O

There are two more related functions we will look at. The first is the
Weierstrass o-function attached to the lattice L and defined as

o(z) =z H (1 — 5) 2w ta? 27

welL’!

>

welL’

Since the series

is absolutely convergent, Weierstrass factorization theory for entire func-
tions will immediately imply that o is an entire function. But without
appealing to the general theory of entire functions, it is not difficult to
carry out an explicit hands-on treatment of this function which we do.

If we formally take the logarithmic derivative of the ¢ function, we
obtain the Weierstrass (-function:

(o)=28 1 v { ! +1+Z].

Z—w w  w?
weL’

The summand on the right can be written as

1 +1+ z i P
w(l—z/w)  w w? k:2wk+1

for z in a suitable region. By our earlier remarks, we see that the se-
ries defining the function {(z) converges absolutely and uniformly for any
compact set in C\ L. Thus {(z) is an analytic function in C\L. Now ex-
ponentiating local primitives of this function, we see that o(z) is an entire
function. If we differentiate {(z), we obtain

(0= % [ o) = ot

Tt is easily seen that both o and ¢ are odd functions since o(—z) = —0(2)
and ((—z) = —((z) (see Exercise 1 below).



50 Elliptic functions

The Weierstrass o-function has strict order < 3. To see this, let z be a
complex number of absolute value R. Then,

©  _k
log(1 — z/w) + z/w + 22 /2w? = _’;)kiﬂ’

provided |z|] = R < |w|. If |w| > 2R, then the sum converges absolutely
since

oo

D 1E < Ll

k=3
Thus, the part of the product defining o(z) which is retricted to |w| > 2R,
converges absolutely and its logarithm is O(R3). The part of the product
over those w satisfying |w| < 2R has O(R?) factors and each factor is
O(ReRZ), from which the assertion follows. From the product formula, we
also see that o(z) is an entire function with simple zeros on L and at no
other points.

Differentiating the function {(z + w) — ((2), we get zero, since the -

function is periodic. Thus, there exists 7(w) so that

((z +w) =C(2) +n(w).

It is clear that 5 is a Z-linear function in w. Thus, 7(2w) = 2n(w). The
notation 1 = n(w;) and 72 = N(ws) is also standard and these are called
the quasi-periods of (. Thus, ¢ is not an elliptic function since it is not
doubly periodic.

What about ¢? From the preceding, we see that

logo(z +w) =logo(z) + n(w)z + c(w),
for some function c on the lattice. It is convenient to write this as
o(z+w)
a(2)
thereby defining ¢ (w). Suppose first that w/2 ¢ L. Setting z = —w/2

above, and using the fact that o is odd, we see at once that ¢¥(w) = —1.
On the other hand,

— ¢(w)en(w)(2+w/2)

o(z4+2w) o(z+42w)o(z4+w)

o(z)  oz+w) o)

and so by applying the functional equation twice, and using the fact that
n(2w) = 2n(w), we get

¥(2w) = P(w)?.
In particular, if w/2 € L, we get

Y(w) = (w/2)*.

Thus dividing by 2 until we get some element which is not twice a period,
we get its value to be —1 which upon squaring becomes 1. This proves:
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Theorem 28
o(2 +w) = o(2)p(w)en @) EFw/2)

where P(w) =1 if w/2 € L and —1 otherwise.

This theorem allows us to factor the p-function as a product of ¢ func-
tions. Indeed, let us observe that for any a € C, we have

o Hatw) ) en @t i
o(z+a)
Noting that n(w)a occurs linearly in the exponent, we see that if ay, ...., an

and by, ..., b, are any two sets of complex numbers satisfying

n n
E a; = E bi,
i1 i=1

then the function N

H o(z —a;)

palen o(z—b;)

is periodic with respect to the lattice L and hence an elliptic function. The
converse is also true, namely that any elliptic function can be written as a
product of above type. For example, we have for any a ¢ L,

o(z+a)o(z—a)
z) —pla) = —
p(z) — p(a) 72(2)0%(a)

To see this, note that the left hand side has zeros at z = +a and all its
translates by L and a double pole at z = 0. There are no other zeros or
poles by Lemma 27. The right hand side is an elliptic function by our
earlier remarks with the zeros and poles of the same order and at the same
places. Thus, the quotient is entire and as its value is determined on the
fundamental domain, it is bounded there. By Liouville’s theorem, it is
constant. Since o(z)/z tends to 1 as z tends to zero, we deduce that the
constant must be 1 by multiplying both sides by z? and taking the limit as
z tends to zero. This discussion along with Exercise 4 proves the following
theorem.

Theorem 29 Any elliptic function is expressible as a product of the form
“oo(z —ay)
— ay
c T 1\
il;[l CT(Z — bz)

where ¢ 1s a constant.

The subject of elliptic functions was developed in the 19th century by
the works of Legendre, Gauss, Jacobi, Eisenstein, Kronecker and others.
Today this field has grown naturally into the theory of modular forms, one
of the most active branches of mathematics. We heartily recommend the
delightful little book of Weil [131] which gives a wide-ranging historical
perspective of this topic.
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Elliptic functions

Exercises

. Show that ((z) and 7(z) are both odd functions.

. Show that for a fixed lattice L, Gax(L) for k > 2 is a polynomial in

G4(L) and Gg(L) with non-negative rational co-efficients.

. Show that the Weierstrass g-function has strict order < 3.

. Prove that for any elliptic function f associated to a lattice L,

Z word,f € L.

weD

. Fix a complex number ¢. Show that the equation p(z) = ¢ has exactly

two solutions in the fundamental parallelogram. If u and v are these
solutions, use the previous exercise to deduce that u+v € L.

. Prove that

. If f is an even elliptic function and u is a zero of order m, show that

—u is also a zero of order m. Prove the same assertion with ‘zero’
replaced by ‘pole.” Further, if u = —u in C/L, then m is even.

. Prove that any even elliptic function f is a rational function in p(z2).

[Hint: By the previous exercise, pair up the zeros as a;, —a; and the
poles as b;, —b; in a fundamental domain, taking care when a pair is
same mod L. Now consider the function

[Li(p(2) = p(ai))
[1:(p(2) — p(bi))’

and show that it has the same zeros and poles as f.]

. Conclude from the previous exercise that any elliptic function is a

rational function in p(z) and p'(2).
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Transcendental values of
elliptic functions

The observation that points on a certain elliptic curve can be parametrized
by the values of the p-function and its derivative allows us to deduce an
important addition theorem for the p-function. Using lemma 27, we will
prove the following addition formula for the gp-function.

Theorem 30 For distinct z,w with z,w,z £ w ¢ L, we have

i iy L () = @)Y
pz+w) =—p(z) — p( )"‘4(@(2)@(11))) '

When z = w, we have

0(27) = ~20(2) + © (@"(Z))Q .

Proof. Let (z1,y1) = (p(2),p'(2)) and (z2,y2) = (p(w), p'(w)) be the
corresponding points on the elliptic curve

y* = 4a® — gow — g3.
Let y = ax + b be the line through these two points. Thus,
©'(2) = ap(2) + b, ¢'(w) = ap(w) +b.
Now the elliptic function
¢'(u) —ap(u) —b

has poles in the fundamental parallelogram D only at z = 0 and this pole
has order 3. Thus, by Lemma 27, it has three zeros in D (counting mul-
tiplicities). Working mod L, we already have two of these zeros, namely
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u =z and u = w. Let u =t be the third zero. Then,

O'(t) = ap(t) +b

and by Exercise 3 in the previous chapter (which follows by integrating the

function z’}l((zz)) ), we have

z+w+te L.

In addition, we have

We conclude that
(ap(t) +b)* = 4p(t)° — g2p(t) — gs.
By our analysis, the cubic equation
(ax +b)* = 4% — gox — g3

has roots = p(z), p(w) and = = p(t). Since the sum of the roots is a?/4,
we get
1(¢(z)— ¢ W)
o) + plu) + o) = /1 = 1 ( .
ol =/ =3 o — o)

Since t = —z — w mod(L) and p(—t) = p(t), we deduce the assertion of
the theorem. The second part is obtained by taking limits as z tends to w.
This completes the proof. [

We are now ready to prove the following important application of the
Schneider-Lang theorem.

Theorem 31 Let L be a lattice and suppose that gs, g3 are algebraic. Then,
for any algebraic a ¢ L, p(«) is transcendental.

Proof. Suppose not. Then, ©’(«) is also algebraic since g, g3 are algebraic.
Since

©'(2)? = 4p(2)° — g2(2) — g3,
we see upon differentiating the left hand side and dividing by ¢’(z) that

20" (2) = 12p(2)* — gs.

Let K be the algebraic number field generated by go, g3, @, p(a). We apply
the Schneider-Lang theorem to the field K and the functions z, p(z), '(2).
The derivative operator maps the polynomial ring generated by these func-
tions into itself. These functions are of strict order < 3 by the theory of the
Weierstrass ¢ and ¢ functions discussed in the previous chapter. Moreover,
the functions f1(z) = z and f2(z) = p(z) are algebraically independent. To
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see this, suppose they are algebraically dependent. Then, there is a poly-
nomial P € C[z,y] such that P(z, p(z)) is identically zero. If the z-degree
of Pis n and n > 1, we may write this relation as

2" Pu(p(2)) + 2" Paca(p(2)) + - + Po(p(2)) = 0,

for certain polynomials Py, ..., P,. If we take zo ¢ L with P,(p(z0)) # 0,
we see from the periodicity of p(z) that the polynomial

2"Po(p(20)) + 2" Pu_1(p(20)) - - - + Po(p(20))

has infinitely many zeros at zg + w for w € L. One can carry out a similar
argument for the case when n = 0. Thus the functions f; and fy are al-
gebraically independent. By the Schneider-Lang theorem, these functions
take values in K simultaneously at only finitely many complex points. But
this is not the case since by the addition formula for the p-function, these
functions take values in K at all the points na ¢ L with n = 1,2,.... This
contradicts the Schneider-Lang theorem. Thus, p(a) must be transcenden-
tal. O

Given a lattice L, let E be the elliptic curve y? = 4z — gox — g3
parametrized by the Weierstrass p-function of L as described in the previ-
ous chapter. Having fixed this setup, let us refer elements of the lattice L
as periods of this particular elliptic curve. The previous theorem implies
that the non-zero periods of such an elliptic curve defined over Q (that is,
g2 and g3 are algebraic) must be transcendental. To see this, note that

o (w1/2) = —p'(-w1/2),
since ' is an odd function. But ¢’ is periodic with respect to L, and so
P (—w1/2) = o' (w1 /2 + w1),
so that p’(w1/2) = 0. The same reasoning shows that
¢ (w2/2) = ¢ (w1 +w2)/2) = 0.
From the fact that (p(z), p'(z)) are points on the elliptic curve
B: y* =41’ - gow — g3,

we immediately see that

(3)0(3) (5
P\ )9 (5 )P D)
are the zeros of the cubic equation

423 — gox — g3 = 0.



56 Transcendental values of elliptic functions

These are called the 2-division points of E. In particular, it follows that for
g2, g3 algebraic, all the 2-division points are algebraic. Thus dividing any
non-zero period by a suitable power of 2 and using the previous theorem,
we immediately deduce the following fundamental result first proved by
Schneider:

Theorem 32 If g5, g3 are algebraic, then the non-zero periods of the ellip-
tic curve

y? = 42% — gow — g3

are transcendental.

This result should be viewed as the elliptic analogue of the transcendence
of 7 since 27i is a “period” of the exponential function e*, and p(z) is a
higher dimensional generalization of the exponential function in the sense
that it is doubly periodic.

We end this chapter by noting the following result for future reference.

Proposition 33 The numbers p(wi1/2), p(w2/2) and p((w1 + w2)/2) are
distinct.

Proof. Suppose not. Let L be (as usual) the lattice spanned by wy,ws
which are linearly independent over R. Let us consider the function

fi(2) = p(2) = p(wr1/2).

This has a double order zero at z = wy/2 since p’(w1/2) = 0. Since p(z)
has a double order pole at z = 0 in a suitable translate of the fundamental
parallelogram, and no other poles, this accounts for all the zeros of f;(z) by
Lemma 27. It follows that any zero must be congruent to w;/2 modulo L.
If p(w2/2) = p(w1/2), then we would have w; = we modulo L, contrary to
their linear independence over R. Thus, p(w1/2) and p(w2/2) are distinct.
A similar argument applies for the other 2-division points. [J

We immediately deduce:
Proposition 34 The discriminant
g5 —27g5 # 0.
Proof. It will be convenient to write
er=p(w1/2), e2=pw2/2), e3=p((wi+w2)/2).
Then, the discriminant of the cubic is
gs — 2793 = 16(e1 — e2)*(e1 — e3)*(e2 — e3)?,

and by the previous proposition, this is non-zero. [J
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Exercises

. If g9, g3 are algebraic, show that for any natural number n, the num-
bers p(w1/n) and p(ws/n) are algebraic numbers.

. Let L be a lattice with ga, g3 algebraic. If p(«) is transcendental,
show that p(na) is transcendental for every natural number n.

. With L as in the previous exercise, show that if p(«) is transcendental,
then so is p(™) () for every natural number n.

. Show that the functions e® and p(z) are algebraically independent.

. Let g9, 93 be algebraic and w be any non-zero period of the elliptic
curve y* = 4a° — gox — g3. Then show that w and 7 are linearly
independent over Q.
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Chapter 12

Periods and quasiperiods

In the previous chapter, we proved that the fundamental periods w1y, ws of a
Weierstrass p-function whose corresponding g, g3 are algebraic are neces-
sarily transcendental. A similar question arises for the nature of the quasi-
periods 71, 7n2. We shall show that these are also transcendental whenever
g2 and g3 are algebraic. To this end, we need the following lemmas.

Lemma 35 (Legendre relation) If wy and wa are fundamental periods such
that we /wy € H, then
won — w1 = 2mi.

Proof. We integrate ((z) around a fundamental parallelogram D, shifted
slightly so that the boundary does not contain a period. The only pole of
C is at z = 0, with residue 1. Thus, By Cauchy’s theorem,

2mi = ¢(z)dz.
aD
But {(z + w) = ((2) + n(w) and so, if we use this fact, we see that the line
integrals along the opposite sides of the parallelogram don’t quite cancel,
but give the required terms. [

Lemma 36 The functions f1(z) = p(z) and f3(2) = az+ {(z), with o, 8

not both zero, are algebraically independent.

Proof. We begin by observing the following facts (see exercises below):

ot o L (G0 /()
C(z1 + 22) = ((21) +((22) + 2 ( p(z1) — p(z2) )

and
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Suppose now that fi, fs are algebraically dependent:
f3(2) +ai(2) f3(2)" 7+ Fan(2) =0, (12.1)

with aq, ..., a, rational functions in p(z). For rational integers ¢ and d, we
have

f3(2 + cwr + dw2) = a2z + cwr + dwz) + BC(z + cwr + dwo)
= f3(2) + a(cw; + dws) + B(emy + dno),
by the quasi-periodicity of (. We claim that we can choose ¢, d such that
0 := a(cwy + dwsy) + B(eny + dns) # 0.

Assume otherwise. Then choosing (¢, d) equal to (1,0) and (0,1) respec-
tively, we have

awy+ B =0 and aws + P = 0.

Multiplying the first equation by 72 and the second one by 7; and subtract-
ing gives
a(winz —wam) =0,

which by Legendre’s relation implies @ = 0. Similarly we deduce 8 = 0,
contrary to hypothesis. Thus we can choose ¢, d such that 6 # 0. It follows
by induction that

f3(z 4+ m(cwr + dws)) = f3(2) + mb,
for every integer m. In (12.1), we replace z by z + m(cw1 + dws) to get
oz 4+ m(cwr +dws)) + an_1(2) f3(z +m(cw +dw))" "t 4+ +an(2) =0,

since the a;(z)’s are rational functions of p(z) which are periodic in w; and
wsz. In the fundamental parallelogram, there are only finitely many values
of z for which the functions a;(z) are not analytic. If we choose z = 2y so
that it is not one of these values, we obtain that the polynomial equation

"+ an_1(z0)2" 4+ ag(z0) =0
has infinitely many zeros:
f3(z0 + m(cwy + dws)) = f3(20) + mb, m=1,2,...,

since 6 # 0. This is clearly a contradiction. [

Remark. The case § = 0 was established in an earlier chapter.
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Theorem 37 Let w be a primitive period of o with go and gs algebraic.
Set no = 2¢(w/2). Then, any linear combination of w and ng with algebraic
coefficients, not both zero, is transcendental.

Proof. Suppose not. Suppose aw + (1 is algebraic where o« and [ are
algebraic numbers, not both zero. Consider the functions

f1(2) = 9(2), f2(2) = ¢'(2), f3(2) = az + B((2).

Let K be the algebraic number field generated by «, 5 and aw+ 319 together
with the roots of the cubic equation

4a® — gox — g3 = 0.

Then, the ring K[f1, fo, f3] is invariant under the differentiation map. We
must check that at least two of the functions fi, fo, f3 are algebraically
independent. But this is clear from the previous lemma. We have already
seen that f; and fy; are quotients of entire functions of strict order < 3.
Clearly, the same is true of ((z) since it is o'(z)/o(z). We will choose
z = (r + 1/2)w with r ranging over the integers. Since p(w/2) is a root of
the cubic equation
4a3 — gox — g3 = 0,

we see that f; takes values in K at these points. We also see that fo
vanishes at these points. Finally, since

((rw +w/2) = ((w/2) + n(rw) = 1m0/2 + rn(w),

fs((r +1/2)w) = aw(r +1/2) + Bio /2 + Bro(w).

Since ((z + w) = ((z) + n(w), putting z = —w/2 and using the fact that ¢
is an odd function, we obtain

((w/2) = =C(w/2) + n(w),
which proves that n(w) = 2¢(w/2) = 1. So we obtain

fs((r +1/2)w) = (r +1/2)(aw + Bro)

which lies in K by our assumption. We now have infinitely many complex
numbers at which all these three functions simultaneously take values in
K. This contradicts the Schneider-Lang theorem. [J

In particular, we have the following important result proved by Schnei-
der;

i

Corollary 38 If go,g3 are algebraic, then any non-zero period or quasi-
period is transcendental.
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Exercises

. Prove that

9" (2)
2¢/(2)

((22) = 2((=) +

. Show that if p(«) is algebraic, then ((2"«) is a polynomial in ((«)

with algebraic coefficients lying in a field of bounded degree over Q.

. Let L be a lattice with corresponding go, g3 algebraic. If « is not a

period, show that at least one of p(a),((«) is transcendental.

. Prove the addition formula for the {-function:

p'(z1) — @'(22)> .

1
C(21 + 22) = ((21) + ((22) + 5 ( o(z1) — p(z2)



Chapter 13

Transcendental values of
some elliptic integrals

In the case of trigonometric functions, we can re-write the familiar identity

sin z 4 cos?z =1

dy 2
2 at -1
2 (%) =

where y(z) = sin z. We can retrieve the inverse function of sine by formally
integrating

as

_dy
1—y

dz =

so that
Sinflz:/ 7dy .
0 y/1—1y?2

The period of the sine function can also be retrieved from

T / bdy

2 0o V/1—y2
However, we should be cautious about this reasoning since sin™'z is a
multi-valued function and the integral may depend on the path taken from

0 to z. With this understanding, let us try to treat the inverse of the elliptic
function p(z) in a similar way. Indeed, we have

dp(z)
dz

= /4p(2)? — gap(2) — g3,
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from which we intend to recover z as

/ dx

z= )
423 — gox — g3

upon setting x = p(z).

As we mentioned before, it is an issue whether these integrals are well-
defined since they may depend on the path. To make these integrals well-
defined, we need to make branch cuts by appealing to the theory of Riemann
surfaces. However, let us attempt to redress this by figuring out the defect,
namely the difference between integrals over two different paths. Let z5 and
z1 be two fixed points and « be a piecewise smooth path parametrized by
x=2x(t), 0 <t <1, with 2(0) = 29 and (1) = z;. Suppose that the path
does not pass through the any of the zeros of the polynomial 423 — gox — g3.
Let y = y(t) be a continuous path such that the points

(@), y(t), 0=<t<1
lie on the elliptic curve
E :y? =423 — gox — g3

associated to . Let y(0) = vp and y(1) = v1 be the end points of y(¢).
Covering space theory for path lifting ensures that there exists a piecewise
smooth path u(t) such that

a(t) =p(u(t), yt)=¢'(ut)), 0<t<L
Let wg and w; be the end points of u(t), that is
p(wo) = 20, 9'(wo) = vy and p(wr) = 21, ¢'(w1) = v1.

Then we have,

(e e, [, [
“‘[yy I Ml AU RS

Now let v be another path from zy to z; and suppose that the corre-
sponding curve y curve has the same beginning point vg. Then it is clear
that its terminal point is equal to +v;. Let I,, = f,“ 4z he the integral
with respect to this new path ~;. Then it is not difficult to see that

I, =1, (mod L) or I, =—I,—2wy (mod L),

according as the terminal point of the new y curve is v; or —v;. The upshot
of these discussions is that these integrals are to be interpreted up to the
period lattice L.
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These discussions also suggest a recipe to recover the periods of an
elliptic curve y? = f(x), namely by integrating dx/y along suitably chosen
closed paths on the curve where x = p(z).

For instance, if we integrate from e; = p(ws/2) to ez = p((w1 +w2)/2),
we get

_/63 dx
2 Je, 423 —gox — g5

Similarly, we have

/63 dx
2 e \/41‘3—9255—93.

A similar comment can be made about quasi-periods. Indeed, since

we obtain
pdp

VA3 — 920 — g3

d¢ = —p(z)dz = —

which gives, upon integration
xdx

v/ 43 79250793.

Many times, it is more convenient to normalize the roots of f(x) and
reduce the curve to the form Ey : y? = z(z — 1)(z — \) with A # 0, 1. Then
the following integrals

UMQ“QWUQ)—1ZT

a;

0 dx o dx
nd
[oo valr —1)(xz—N) /1 z(x —1)(x —N)

determine a fundamental pair of periods for the curve E.

These integrals are special cases of elliptic integrals. The reader may
refer to the books [25], [61], [114] and [132] for more comprehensive treat-
ment of these integrals. In the later chapters, we will evaluate some explicit
elliptic integrals and also link them to hypergeometric series.

The elliptic intrgrals can be related to the problem of determining the
circumference of an ellipse. To see this, let us consider the ellipse

1.2 y2

2trp=t

with a, b real algebraic numbers and 0 < b < a. We would like to calculate
the perimeter of this ellipse. If we parametrize a curve in R?, by a map

e ((t), y(1),
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then, as t goes from A to B, the length of the curve traversed is

B
| Ve,
A
from elementary calculus. Since the ellipse can be parametrized by the map
t— (asint,bcost)

for 0 <t < 2w, we see that the perimeter of the ellipse is equal to

w/2
4/ \/a2 cos? t + b2 sin? tdt.
0

Putting v = sint, the integral becomes

2 _}p2
/\/ (a? — b2)u? du.
1—u?

In case a = b, this becomes ar /2. But when a # b, this is not an elementary
function.
Let us set k2 = 1 — b?/a? so that the integral becomes

1 — k22
1 —u?

If we put t = 1 —k2u?2, it is easy to see that the circumference is an algebraic
multiple of

1 tdt
-k HE— 1)t — (1 - k2))

which resembles a quasi-period. The curve

y =ttt = 1)t - (1-k%)

is not in Weierstrass form but can easily be put into that form by changing
t to t + (k* —2)/3. Making this change of variable shows that the circum-
ference of an ellipse with algebraic major and minor axes is given by an
algebraic linear combination of a period and a quasi-period of an elliptic
curve defined over Q. Since it is non-zero, by the Schneider-Lang theorem,
the circumference is transcendental.

In another set up, the regulator Ry of a number field K measures the
volume of the unit lattice of Og. But the transcendence of Rg is not
known. In a later chapter, we shall see that Schanuel’s conjecture implies
that Ry is transcendental.
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Exercises

. If a # 0 and is algebraic, show that tan « is transcendental. Deduce

that
/ * dx
o l1+a?

is transcendental for any non-zero algebraic a.

. Show that if 0 < @ < 1, and « is algebraic, then the integral

/ ¢ dx
0o Vv 1-— .CC2
is transcendental.

. Let a be algebraic and satisfy 0 < a < 1. Show that if 0 < k < 1,
and k is algebraic, then the integral

/o‘ xdx
0 \/(l—xz)(l—k2x2)7
is transcendental. What happens if k = 1? [Hint: put 22 =1 — 1/t.]

. Prove that the integral
/ < dx
1 Vv $3 —1

is transcendental.
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Chapter 14

The modular invariant

We begin with a discussion of an important result in complex analysis
called the uniformization theorem. We have shown how to associate a g-
function to a given lattice L. Thus, g2 = g2(L), g3 = g3(L) can be viewed
as functions on the set of lattices. For a complex number z with imaginary
part $(z) > 0, let L, denote the lattice spanned by 1 and z. We will denote
the corresponding ¢, g3 associated to L, by g2(2z) and g3(z). Thus,

92(z) = 60 Z (m+mnz)™4,

(m,n)#(0,0)
and
g3(z) = 140 Z (m +nz)~C.
(m,n)#(0,0)
We set

A(z) = g2(2)° = 27g3(2)?,

which is the discriminant of the cubic defined by the corresponding Weier-
strass equation. We first prove:

Lemma 39 A(z) # 0.
Proof. This is equivalent to showing that the roots of the cubic equation
42® — ga(2)x — g3(2) = 0

are distinct. But this we have already seen in Proposition 34 of chapter 11.
O

We now introduce the important j-function defined as

92(2)3
92(2)% — 27g3(2)*’

j(z) :=1728



70 The modular invariant

which by the previous lemma, is well-defined for every z in the upper half-
plane. We will use the modular invariant to address the following question:
given two complex numbers A, B, with A3 — 2782 +£ 0, does there exist a
lattice L such that its Weierstrass function g satisfies the equation

o (2)? = 4p(2)® — Ap(z) — B?

We have seen a possible way of answering this question, namely to recover
the periods by integrating the equation of the corresponding elliptic curve.
An alternate method is via the modular function which we now describe.

As mentioned in the beginning, we can view go and g3 as functions on
the lattice L spanned by the two periods wi,ws. Let us note that if we
replace wi,ws by Awi, Aws, we change g, g3 by a factor of A% and A6
respectively. The corresponding elliptic curve is

y2 =4a° — )\_492x — /\_693.

If we change variables and replace by A~2z and y by A~3y, we find that
we are reduced to the same Weierstrass equation as we started with.

Now suppose that L is a lattice generated by wy,ws which are linearly
independent over R. Hence S(wz/w1) # 0 and by changing signs appropri-
ately, we can arrange that this lies in the upper half-plane:

H:={z=x+4+iy:z,y € R,y > 0}.

Let SLo(Z) be the group consisting of 2 x 2 matrices with integer entries
and determinant 1, that is

SLy(Z) = {a <Z Z) |a,b,c,d€Z,adbcl}.

Then every such o acts on a basis [wy,ws] of L by sending it to
[awr + bwa, cwy + dws]

which generates the same lattice. Thus, the fundamental periods are not
uniquely determined by the lattice. Conversely, two fundamental pairs
[w1,ws] and [wf,w})] generate the same lattice only if they are congruent
modulo the above action of SLy(Z).

The above action of SLy(Z) on the bases induces an action on the upper

half-plane:
a b az—+b
czi= . 14.1
(C d) i cz+d ( )

Recalling that for any z € H, g2(z) and g3(z) are precisely the go and g3
associated to the lattice L, spanned by 1 and z, we have,

az+b\ 4
92 (cz+d> = (cz +d)"g2(2)
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and

az+b B 6
g3 <0z+d> = (cz +d)"g3(2).

Thus the modular function j(z) satisfies

i(E2) =i

cz+d

and hence is invariant under the action of SLy(Z).

We now determine a fundamental domain for the action of SLy(Z) on
H. More precisely, we show that any z in the upper half-plane is equivalent
to a point in the following region

I(z) >0, —1/2 < R(2) < 1/2, |2] > 1.

This we show as follows. First note that for any z € H and

a b
o= (c d) € SLy(Z), (14.2)
the imaginary part of 0.z is given by
S(2)
S(o.2) = ————. 14.3
‘X(U Z) |CZ + d|2 ( )

Now let us isolate two distinguished elements T and S of SL2(Z) given by

T:((l) 1) and S:(? _(1)>. (14.4)

We see that Tz = z+ 1 and Sz = —1/z. Let z € H be arbitrary. If
I(z) > 1, repeated application of T ensures that z is equivalent to a point
in the above mentioned region. If §(z) < 1, we chose

o= (ZL Z) € SLy(Z) (14.5)

such that |cz + d| is minimum and hence $(0.2) is maximum (This is possi-
ble as Z is discrete). Let w = 0.z. As before, applying T repeatedly to w en-
sures that w and hence z is equivalent to a point zo with R(zo) € [-1/2,1/2].
Note that S(w) = $(zg). We claim that |zg| > 1. For otherwise,

S(w)

S(SZO) = ‘ZO|2

> %(’U}),

contradicting the maximality of $(w). Hence any z in the upper half-plane
is equivalent to a point in the region

S(z) >0, —1/2 < R(2) < 1/2, |2| > L.



72 The modular invariant

One can show that if two points in this region are equivalent under the
action of SLs(Z), then they lie on the boundary (see exercises below). We
call this region the standard fundamental domain for the action of SLy(Z)
on the upper half-plane. With a little more effort, one can deduce that
SLy(Z) is generated by the matrices S and T'.

Since the modular function j(z) satisfies

faz+b\ .

J <Cz+d> =3(2)
and hence is invariant under the action of SLs(Z), it defines a function on
the quotient space H/SL2(Z) to C. We will prove later that the modular
function takes every complex value (in fact, exactly once) on this quotient
space. Note that the value zero implies the vanishing of g2(z). Assum-
ing this fact, we can complete our proof of the uniformization theorem as
follows.

If we are given (A, B) = (0, B) with B non-zero, we first choose zy so

that ga(z9) = 0. Since A(zp) # 0, we have g3(z9) # 0. Now choosing A
such that

A %g3(20) = B,

the lattice [\, Azg] does the required job.

If A # 0, we proceed similarly. Let a = B2/A3. Observe that a # 1/27
since A% — 27B2 # 0. Choose zy so that j(z9) = 1728/(1 — 27a). We can
now multiply g2(z0) and g3(z¢) appropriately to arrange A\~ ®gs(29) = B
and A"%ga(29) = A. This completes the proof.

It remains to show that the j-function takes on every complex number
precisely once. We begin by introducing the Bernoulli numbers. These are
defined by the formal power series expansion:

o0 k
x x
= Bp—.
et —1 2 k!
k=0
For example, By = 1,B; = —1/2,By = 1/6,B3 = 0 and so on. One

can show that Bgxi11 = 0 for £ > 1. Clearly, these numbers are rational
numbers. They have remarkable arithmetic properties which we will not
discuss here. Our interest is to relate these to the values of the Riemann
zeta function. We follow the exposition given in [107]. For (s) > 1, the
Riemann zeta function ((s) is defined as
oo
1
C(s) = ns
n=1
This should not be confused with the Weierstrass (-function!
Following Euler, we begin by observing the product expansion for sin z:

00 2
. z
smz:z” (1—22).
nam
n=1
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Taking logarithmic derivatives of both sides gives the following expansion
for z ¢ 7Z,

1 > 2z
tz = — _ 14.6
covs z + 7;2::1 22 —n2x2 ( )

Thus one has the following expansion around the origin,

x© ZQk: > ZQk:
zcotz:lfzzwzlf2z:((2k)ﬁ. (14.7)
k=1

n=1k=1

The left hand side is ] ]
iz(e"” + e %)

eiz _ e*iz
which can be re-written as
iz(e?® 4+1) 2iz
P R N Tea—

This is easily seen to be
=, (202)F
k=0

We immediately deduce:

Theorem 40 If ((s) is the Riemann zeta function, then for k > 1,

i)2k
C(2k) = 3(22(22),

In particular, each of these values is a transcendental number.

It is interesting to note that this derivation also shows directly that
Bok+1 =0 for £ > 1 and that (—1)k+1B2k > 0. In particular, we deduce
from Theorem 40 that

2 4 70

((4) = 2 and ((6) = 95

We would like to relate these observations to the Eisenstein series G4, Gg
introduced earlier. From equation (14.6), we see that

- 1 1
7rcot7rz:+z< + )
z = zZ+m zZ—m

2miz

On the other hand, writing ¢ = e“™**, we have

cosSTZ +1 271 >
Teot Tz = m— —ird =im — :iW—QWiZq".
sinmz q—1 1—gq =
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Comparing this with (14.6), we obtain

— = — 2™ .
z Z4+m Z—m n:oq

m=1

By successive differentiations of the above, we get the following formula
(valid for k > 2):

Theorem 41

Z (m—i—z)k:(k —271) z::

m=—0oo

Using this result, we will obtain the following expansion of the Eisenstein

series:
Gop(2) := Z (mz 4 n) k.
(m,n)#(0,0)

Indeed, separating out m = 0 from m # 0, we get

GQk(Z) - 2C(2k> +2 Z Z(mz + n)_Qka

m=1n€eZ

and using the previous theorem with z replaced by mz, and k replaced by
2k,

2k o0© o0

ng(z) ZQC(QIC) 27”' ' ZZko 1 ad

" d=la=1
If we define the function
=S
d|n

we may write this expansion as follows.
Theorem 42

¢ 2(2k) + 22T = 2z

2k (2) = 2(( 2’,‘{:_1,2021@1 "og=e

This is the Taylor expansion of G at 0o, once the one-point compact-
ification of H is endowed with a suitable Riemann surface structure.

We would like to relate this to g and g3 defined earlier. Indeed, an easy
calculation shows that

A(z) = (2m)'2(q — 24¢% + 252¢° — 1472¢* + - ),

the coefficients of the power series in the brackets defining the celebrated
Ramanujan T-function.
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These expansions for Gg;, and A are enough to prove that the modular
function j takes every complex value precisely once. For this, we view j as
a meromorphic function on the compactified Riemann surface H/SLs(Z) U
{ico}. The map

Z—q= 6271’1'2

gives the local parameter at ico. In other words, for any SLo(Z)-invariant
analytic function f on Hl, we first express f as a function of ¢ by composing
with the local inverse of the map z — ¢q. This defines an analytic function
on the disc 0 < |g| < 1. The behaviour of this function at the origin
determines the behaviour of f at ico. Recalling the definition of j and
using the ¢ expansions for A and G4, we have the following ¢ expansion for
the j function:

1
J(2) = T+ 1968840+

Thus the j function has a simple pole at t0o. Since a meromorphic function
on a compact Riemann surface has an equal number of zeros as poles, we
see that the equation j(z) = ¢ has exactly one solution since j has only
a simple pole at ico. In other words, the j function defines an analytic
isomorphism between the compact Riemann surface H/SLo(Z) U {ico} and
the Riemann sphere P;.

This completes the proof of the uniformization theorem and we record
this as:

Theorem 43 Let A, B be two complex numbers such that A3 — 2782 £ 0.
There exists a latticle L and an associated p-function that satisfies

¢'(2)* = 4p(2)° — Ap(2) - B.
This allows us to speak of the j-invariant associated to the elliptic curve
E: y?>=42>— Az — B,

as j(E) = 172843 /(A — 27B?).

Suppose that we are given two period lattices L and L* with corre-
sponding Weierstrass functions g and @*, as well as corresponding go, g3
and ¢5,95. We would like to determine when the corresponding elliptic
curves are isomorphic. That is, when is there an analytic isomorphism

¢:C/L>C/M

where ¢ is also a group homomorphism?

Let us first try to characterise analytic maps between such tori. Since
the natural maps from C to the quotients C/L and C/M are universal
covering maps, any such analytic map

¢: C/L—C/M
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lifts to an analytic function ¢ : C — C. Now for any w € L, consider the
function

fu(2) = ¢(z +w) — ¢(2).
This analytic function is mapped into M and hence is constant. Differen-
tiating, we see that q~5’ is an analytic elliptic function with respect to the
lattice L and therefore is also constant. This implies that ¢(z) is of the
form az+ b for some a,b € C. Since ¢ is the lift of the map ¢ : C/L—-C/M,
we see that aL C M. In other words, every analytic map

¢:C/L—-C/M
is necessarily of the form
p(z+L)=az+b+ M

where al. C M. Clearly, ¢ is invertible if and only if aL = M. Finally, if
we require ¢ to be a group homomorphism, then ¢(0) = 0 and hence

¢(z+L)=az+ M.
We record these observation in the following theorem.

Theorem 44 If ¢ : C/L — C/M is an analytic homomorphism, then
d(z+L) = az+M for some complex number o and «L C M. In particular,
two lattices L and M give rise to isomorphic elliptic curves if and only if
there is a complex number o such that aL = M.

Any non-zero analytic homomorphism between elliptic curves is called
an isogeny. Further, we say two lattices L, M are homothetic if oL = M for
some complex number a. Clearly this is an equivalence relation. The above
theorem says that there is a one-to-one correspondence between elliptic
curves over C and homothety classes of lattices of rank 2 over R.

From this theorem, we will deduce that two elliptic curves are isomorphic
if and only if their j-invariants are equal. One way is obvious, namely if
F1 and FE» are isomorphic, then their corresponding lattices are homothetic
and hence j(F1) = j(Es).

To establish the converse, recall that for a given lattice L, there exists a
basis [wy,ws] with 7 = wa/wy in the upper half plane H. Thus any lattice
is homothetic to a lattice of the form L, = Z 4 Z7 where 7 € H. Further,
for any two points 7 and 7/ in H, L, and L, are homothetic if and only if
there exists a o € SL2(Z) such that 0.7 = 7/. This means that elements
in the quotient H/SLy(Z) can be identified with the set of lattices up to
homothety.

Now let Ej, Es be two elliptic curves with j(F;) = j(F2). Let their
corresponding lattices be L and M respectively. Suppose that they have
the same j invariant. By the above theorem, F;, F5 are isomorphic if L
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and M are homothetic. Recall that for the lattice L, there is a unique
point 7 in H/SLs(Z) such that L is homothetic to L, = Z + Z7. Let 7/
be such point in H/SLy(Z) such that M is homothetic to L,,. But since
J(E1) = j(Es), j(1) = j(7') and by the injectivity of j on H/SLa(Z), we
deduce that 7 = 7/. Thus L and M are homothetic and hence FE; and E»
are isomorphic. This proves:

Theorem 45 Two elliptic curves E1 and Es are isomorphic over C if and
only if j(E1) = j(E2).

Theorem 44 allows us to study the endomorphism rings of elliptic curves.
Indeed, if E is an elliptic curve with period lattice L = [wq,ws], then all
homomorphisms

¢:C/L—C/L

are such that ¢(z) = az for some « satisfying aL. C L. That is, all en-
domorphisms are given by “complex multiplications”. Each endomorphism
corresponds to a complex number « satisfying

awy = awy + bwa, aws = cwy + dws,

for integers a,b,c,d. In particular, o is an eigenvalue for a matrix with
integer entries. It follows that « is an algebraic integer of degree at most
two over Q. Clearly, End(E) contains an isomorphic copy of Z since the
maps z — nz have the property that nL C L. If End(F) is larger than Z,
choose a ¢ Z, o € End(E). If we choose our lattice in the form L, = [1, 2],
then the above equations read

a=a+bz, az=c+dz.

Thus,
(a+bz)z=(c+dz)

which means that z is algebraic of degree at most 2 over Q. But more can
be said. Since a ¢ Z, we have b # 0. Thus, z has degree 2 over Q. Since
z lives in the upper half-plane, it generates an imaginary quadratic field.
Hence the ring of endomorphisms can be identified with a subring of the
ring of integers in an imaginary quadratic field.

Thus, we may partition elliptic curves into two groups, those whose
endomorphism ring is isomorphic to Z and those for which it is larger, in
which case it is a subring of an imaginary quadratic field which is strictly
larger than Z. Such a subring is an order in the imaginary quadratic field
k = Q(o). We recall that an order O in a number field K is a subring of
the ring of integers Ok of K which contains 1 and a Q-basis of K. In such
case, we say F is a CM curve (CM standing for complex multiplication) and
in the former case, we say the curve is non-CM. Points z in the standard
fundamental domain D for which Q(z) is an imaginary quadratic field are



78 The modular invariant

sometimes called CM points, for obvious reasons. One can be a bit more
precise. If £ has CM by on order O in k, then O = Z + fOj for some
positive integer f.

Now for any order O in a number field K, the group of invertible frac-
tional ideals of O modulo the subgroup of principal ideals forms a finite
abelian group. This is called the Picard group of O. If O = O is the ring
of integers (hence the maximal order), then its Picard group is the usual
ideal class group of K.

Let O be an order in an imaginary quadratic field k. Then it is known
that the set of isomorphism classes of elliptic curves E over C whose endo-
morphism ring End(E) is equal to O is in bijection with the Picard group
of O.

Exercises

1. Show that SL2(Z) is generated by the matrices

(o1) = (5 70)

2. Prove that any two interior points of the region
D={S(z) >0, —-1/2<R(2)<1/2, |z|>1},
are inequivalent under the action of SLy(Z).

3. Justify the interchange of summations in formula 14.7.

4. Let D* be the compactified upper half-plane modulo SLy(Z). Show
that any meromorphic function on D* has only a finite number of
zeros and poles.

5. Prove that any meromorphic function f on the upper half-plane sat-

isfying ,
az +
(=) =

( ‘c‘ Z > € SLy(2),

is a rational function in j(z).

for all



Chapter 15

Transcendental values of
the j-function

Let L and M be two lattices with corresponding Weierstrass functions g
and p*. We begin by showing that if p and @* are algebraically dependent,
then there is a natural number m such mM C L. Indeed, suppose that p
and p* are as above and there is a polynomial P(xz,y) € C[z,y] such that
P(p,p*) = 0. Then, for some rational functions a;(x) and some natural
number n, we have

()" + an-1(9"(2))p(2)" "+ + ao(p"(2)) = 0.

Choose zp € C so that p*(zg) is not a pole of the a;(z) for 0 <i <n —1.
This can be done since the a;(z) are rational functions and so there are
only finitely many values to avoid in a fundamental domain. Then,

9(20)" + an—1(9" (20))9(20)" " + - + ao(p*(20)) = 0.
If w* € M, then we get
(20 + W)™ + an—1(p*(20))p(20 +w*)" "1 + -+ + ag(p*(20)) = 0.

Thus, ©(z0 + w*) as w* ranges over elements of M are also zeros of the
polynomial

2" 4 an—1(p*(20))2" 4+ -+ ao(p*(20)) = 0.

In particular, this is true of multiples of wj and w;. We therefore get
infinitely many roots of the above polynomial equation unless mM C L
for some positive natural number m. We record these observations in the
following.

Theorem 46 Let L and M be two lattices with corresponding Weierstrass
functions p and p*. Then, o and p* are algebraically dependent if and only
if there is some natural number m > 0 such that mM C L.
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Proof. We have already established the “only if” part of this assertion.
For the converse, suppose that mM C L. Then, p(mz) is periodic with
respect to M. Thus, it is an even elliptic function with respect to M. As
noted in an earlier chapter, this means that it is a rational function in p*.
On the other hand, p(mz) is also a rational function in p(z). Thus, p and
p* are algebraically dependent. This completes the proof. [J

We are now ready to prove the following theorems due to Schneider.

Theorem 47 Suppose that ¢ and p* have corresponding gz, gs and gs, gs
algebraic, and assume that they are algebraically independent. Then,

p(2), 0" (2)
cannot take algebraic values simultaneously.

Proof. Let us suppose that zy is such that both p(z) and p*(z) are both
algebraic. Let K be the field generated by

’

92,93, 95, 95, 9(20), & (20), 9" (20), 9" (20)-

We apply the Schneider-Lang theorem with the functions

p(2), 9'(2), 9" (2), 9" (2)-

By hypothesis, o and p* are algebraically independent, so the transcen-
dence degree is 2. The Schneider-Lang theorem says that there are only
finitely many complex numbers for which all these functions take algebraic
values in K. But this is a contradiction since they take algebraic values
in K for the points nzy as n runs over an infinite family of integers. This
completes the proof. [

Theorem 48 If « is an algebraic number in the upper half plane which is
not a quadratic irrational, then j(«) is transcendental.

Proof. Let wy,ws be such that wy/wi; = a. Suppose that j(«) is algebraic.
Replacing wq, ws by Adwi, Aws we can arrange go = 1if j(«) # 0 and g3 = 1 if
j(a) = 0. In this way, we can arrange g, g3 algebraic. With these settings,
let L be the lattice spanned by wi,ws. Now let wi = awi,wi = aws
and denote by M the lattice spanned by wi,wj. Thus, g5 = a~%ge, and
g5 = a~%gs. Also,

p*(az) = a %p(2).

In particular, setting z = wy /2 gives

" (w2/2) = a™*p(w1/2),
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so that both p(ws/2) and p*(we/2) are algebraic. This contradicts the
previous theorem unless p and p* are algebraically dependent. By Theorem
46, this means that there is a natural number m such that mM C L. In
particular,

w] = awy + bwa, wi = cwy + dwa,

for some rational numbers a, b, ¢, d such that ad — be # 0. [This is because,
w1, ws are linearly independent over R, as well as w},w3.] Thus

(2)= (00 ()

which means that « is an eigenvalue of the matrix

(ta)

Since a, b, ¢, d are rational numbers, this means that « is a quadratic irra-
tionality. O

This means that j(«) is transcendental for every algebraic a in the upper
half-plane which is not an imaginary quadratic irrationality. In the latter
case, one can show that it is an algebraic number. This is really a chapter
in class field theory. We give a brief indication of why j(«) is algebraic in
this case.

We begin by noting that Theorem 46 tells us that the ring of endomor-
phisms of an elliptic curve is either Z or an order in an imaginary quadratic
field. In the latter case, we say the curve has complex multiplication. Now,
let E,, be an elliptic curve with j(E,) = j(a) with o an imaginary quadratic
irrationality. Let K = Q(«). Then, End(E,) ® Q = K.

Let O be an order in the ring of integers of K. As we mentioned in
the previous chapter, the set of equivalence classes of invertible fractional
ideals of O forms a multiplicative abelian group called the Picard group of
O and there is a one-to-one correspondence between isomorphism classes
of elliptic curves whose endomorphism ring is isomorphic to O and ideal
classes of the Picard group of O. This correspondence is given by taking
an ideal a of a given class and considering the elliptic curve C/a. It is a
standard theorem of algebraic number theory that this group is finite.

Now for any automorphism o of C and elliptic curve E, let E° denote
the curve obtained by applying o to ga,g3. Clearly, j(E?) = j(E)? and
End(E?%) ~ End(FE,) ~ O and as there are only finitely many isomorphism
classes of elliptic curves with a fixed endomorphism ring, the set of values
j(@)? is a finite set as o ranges over automorphisms of C. This completes
the proof. For a more comprehensive account, see the books by Lang [73]
and Silverman [115].

In fact, if o is an imaginary quadratic irrational, then j(«) is an algebraic
integer of degree equal to the class number of Q(«) (see [110] or [115]). A
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celebrated example is given by letting

1+ +v/—163
o0a=———
2

Q(v/—163) has class number 1. In fact it is the ”largest” imaginary quadratic
field with class number one. More precisely, there exists no square free in-
teger d > 163 such that Q(v/—d) has class number 1. Now for any z in the
upper half plane, the j-function has the following expansion

1
§(2) = = + 744 + 196884q + - - -
q

where ¢ = ¢*™%. In the case z = «, we have
j(a) = —e™10 1 744 — 196884~ 7VI05 4 ...

But j(«) must be an ordinary integer since Q(1/—163) has class number 1.
This and some calculation gives the following remarkable expression

e™V163 — 262537412640768743.99999999999925...
= (640320)% + 744 + O ((” 163)

and that j(a) = —(640320)3. Note that ¢™V1%3 is a transcendental number
by the Gelfond-Schneider theorem.

Exercises

1. Show that
™87 — 147197952000.9999999999..

accurate to ten decimal places.

2. Deduce that

]_ N/ —
j (‘L267) = 147197952000.

3. Show that j(i) = 1728.
4. Show that j((1+/=3)/2) = 0.



Chapter 16

More elliptic integrals

We will look at two explicit consequences of Schneider’s theorem on the
transcendence of periods of elliptic curves defined over the algebraic num-
bers.

Let us look at the curve

y? =423 — 4.
One of the periods is
/ < dx
1 Vi -1 '
This can be related to the classical beta function as follows. Let us first
put = 1/t to transform the integral to

1
/ t712(1 — 3"V 2az.

0
Putting ¢> = u changes it to

1
1/ w01 —u) Y2 du = 33(1/6,1/2),
3 Jo 3

where

B(a,b) = /01 u (1 — )’ tdu, R(a),R(b) > 0.

Using the usual formulas for the beta function (see Exercise 1), one can
show that the period is equal to
L(1/3)°
24/37
The formula for the beta function is easily derived (as we will see later) by
putting u = cos? § which transforms the integral into

/2
2 / cos2 1 9sin?*~1 9d6.
0
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Thus, by Schneider’s theorem, this number is transcendental.
Another curve to consider is

y? = 4a® — 4z
One of the periods (say w) is
/ © dr
1 Vit =
By what we have proved, this integral is transcendental. Similarly as above,
we find that this is

1t 1
f/ w31 —w)"Y? = 2B(1/4,1/2).
2 Jo 2
By the usual identities involving the beta function, we have

_ra/4)2
w = 2\/% .

For the above curve
y2 =473 — 4x,

we have g3 = 0. Since g3(i) = i%g3(i) = 0, its lattice L is given by
L =Zw + Z(iw).

Clearly, this has complex multiplication by Z[i]. Furthermore, this curve
corresponds to the point z = 7 in the standard fundamental domain and
has j-invariant equal to 1728. We therefore deduce that

3 1 1 T(1/4)8

(m+in)* 15 2672

(m,n)#(0,0)

as this is simply the corresponding Fisenstein series evaluated at i.

These calculations can be generalized for CM elliptic curves. Indeed, if
O is an order in an imaginary quadratic field K and E is an elliptic curve
with CM by O, then the corresponding lattice L determines a vector space
L ® Q. This is invariant under the action of K. Therfore L ® Q = Kw for
some w € C* defined up to elements of K*. In particular, if O = O is
the full ring of integers of K, w is given by the Chowla-Selberg formula:

w=a\1T H D(a/d)wx(@)/4h

0<a<d,(a,d)=1

where « is an algebraic number, w is the number of roots of unity in K, d is
the discriminant of K, x is the quadratic character mod d determined by K
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and h is the class number of K. We shall come back to the Chowla-Selberg
formula in Chapter 26.
In the special case of y? = 423 — 4z, the formula gives

ay/al(1/4)T(3/4)7 1,
which is in agreement with our earlier formula once we apply the usual
functional equations of the I'-function to it.
Exercises

1. Show that the beta function B(a,b) can be given in terms of the
I-function as I'(a)I'(b) /T'(a + b) for R(a), R(b) > 0.

2. Define the complete elliptic integral of the first kind by

K(k) = /Oﬂ/2 __ 4

1—k2sin?6
Show that K (1/v/2) =T'(1/4)?/4+/7.

3. The complete elliptic integral of the second kind is given by

/2
E(k) = / V1 — k2sin® 0d6.
0

Show that
E(1/V2) = 7%/?0(1/4)72 + T(1/4)?/8/x.
4. Show that
Z 1 _ I(1/3)'®
6 8,6°
(D (0.0) (m+np) 5.7.287
2mi/3

where p = e
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More elliptic integrals




Chapter 17

Transcendental values of
Eisensteln series

In this chapter, we will prove a classical theorem of Schneider and apply it
to study transcendental values of the Eisenstein series introduced in earlier
chapters.

Theorem 49 Let p be a Weierstrass p-function with algebraic invariants
92,93 and zy a complex number which is not a pole of . Then, at least one
of the numbers e*, ©(zg) is transcendental.

Proof. Suppose not. Let K be the field Q(go, g3, €, p(20), 9’ (20)). We
apply the Schneider-Lang theorem to the ring generated by K[f1, f2, f3]
where f1(z) = €%, f2(2) = p(z) and f3(2) = ©'(2). We need to show that
f1, f2 are algebraically independent, but this is easily done (see for instance,
Exercise 1). By Schneider-Lang, there are only finitely many values at
which these functions can simultaneously take values in K. However, since
e and p(zg) are in K, so are e™* and p(nzg) for infinitely many n € N.
This completes the proof. [

We remark that if e is replaced by e?# with 3 algebraic, then a suitable
modification of the proof leads to:

Theorem 50 Let o be as above with algebraic invariants g, gs3. Let 8 # 0
be algebraic and zg a complex number which is not a pole of p(z). Then, at
least one of e#%0, o(zy) is transcendental.

Corollary 51 At least one of

92793757 @(O‘%eﬁa

s transcendental.
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In the special case when g9, g5 are algebraic and p(«) and e are alge-
braic with v # 0, v/« is transcendental. If not, we may apply the corollary
with 8 = 7/a and derive a contradiction. In particular, we deduce that
a/7 is transcendental for any algebraic point « of g (that is, « € C such
that p(«) is algebraic). Putting o = w/2 where w is a fundamental period,
we derive the transcendence of w/m. We record this as:

Corollary 52 If « is an algebraic point of p(z) and B is an algebraic
number, then e#* is transcendental. In particular, o/7 is transcendental.

D. Bertrand [15] observed that this result can be used to derive results
about transcendental values of classical Eisenstein series. These were in-
troduced in an earlier chapter. But we normalize these as:

) p—
Eor(q) =1 — B oa-1(n)g", q=e
2k

" n=1

2miz

Theorem 53 (D. Bertrand) For all complex numbers q with 0 < |q| < 1,
at least one of the numbers E4(q), E¢(q) is transcendental.

Proof. Let z € C with R(z) < 0 such that ¢ = e*. Consider the lattice L
spanned by 2mi and z. This is a rank 2 lattice since $(z) # 0. The corre-
sponding Weierstrass p-function has go and g3 given by rational multiples

of
Z (mz + 2min) 2k
(m,n)#(0,0)
for £ = 2,3. By Theorem 40, we see that go, g3 are rational multiples of
E4(q), Fs(q) respectively, where ¢ = e*. Observe that z = i7 is an algebraic
point of p. Since e!™ = —1 is algebraic, this contradicts Theorem 50. This
completes the proof. [

We now describe some recent work of Nesterenko that generalizes the
theorem of Bertrand and as a consequence proves the algebraic indepen-
dence of 7 and e”.

With Ramanujan, we introduce the Eisenstein series

Es(q)=1—-24 Z o1(n)q™.
n=1

Nesterenko proved:

Theorem 54 (Nesterenko, 1996) For each ¢ € C, 0 < |q| < 1, at least
three of the numbers

4, B2(q), E4(q), Es(q)

are algebraically independent over Q.
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An immediate consequence is the following:

Corollary 55 If q is an algebraic number with 0 < |q| < 1, then Ea(q),
Ey(q), Es(q) are algebraically independent over Q. In particular, each of
these numbers is transcendental.

Another corollary is the following result originally conjectured by Mahler
(see [76]) and first proved by Barré-Sirieix, Diaz, Gramain and Philbert [13]
in 1995.

2miT

Corollary 56 For any 7 € H, at least of one of the two numbers e and

j(7) is transcendental.

The proof of Barré-Sirieix et al is based on modular arguments, different
from those developed by Nesterenko. In this set up, there is a general
conjecture by Manin (see [77]) which states that for any algebraic number
« different from 0 and 1 and any 7 in the upper half plane H, at least one
of the two numbers a” and j(7) is transcendental. Here, a™ = e7'°8® with
any fixed choice of a branch of logarithm. This conjecture is open.

Another important consequence of Nesterenko’s result is:

Corollary 57 Let p(z) be a Weierstrass g-function with algebraic invari-
ants go,gs3. Let wi,ws be its fundamental periods. Let ni,ns be the corre-
sponding the quasi-periods. Then,

27i(wa /w1

€ ),wl/ﬂﬂh/ﬂ

are algebraically independent over Q.

To deduce the corollary from Theorem 54, we use the fact that for
q = e2m(w2/w1) e have

w wy\4 27 w1 \6
B@) =322 B0 =2 (D) 0 Bl =7 (2) 6

The last two are clear from our previous analysis. The first requires proof
and this is somewhat delicate since Es is not a modular form (see [73],
for instance). These formulas imply that E5(q), F4(q), Es(q) are algebraic
over the field Q(wy/m,m1/m). But by Theorem 54, the field generated by
q,E2(q), E4(q), Es(q) has transcendence degree 3. The corollary now fol-
lows. We add that the algebraic independence of the two numbers wy /7
and m; /7 was first established by Chudnovsky.

An interesting situation arises in the complex multiplication case. Let
us first prove the following interesting lemma proved by Masser ([78]).

Lemma 58 Let p(z) be a Weierstrass p-function with algebraic invariants
g2, 93 and complex multiplication by the imaginary quadratic field k. Let
w1, ws and M1, M2 be the fundamental periods and quasi periods respectively.
Then wo and 1o are algebraic over the field Q(wy,m1).
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Proof. Let K = k(g2,93). Since 7 = wa/wy € k and lies in H, it satisfies
an equation
ar®> +br+c¢=0

with co-prime integers a, b, c and a # 0. Let
Cllp — AT = QW

for some o in C. We will show that o« € K and this will prove the assertion.
Let f be the function defined as
f(z) = —c {(az) + at{(aTz) + aTaz.
Then
f(z+w) = f(z) = —cam + a*mns + aTaw; = 0.

Further since
aTwy = —bwy — cwy,

a similar calculation shows that f(z 4+ ws) = f(2). Thus, f is a doubly
periodic function with respect to the lattice L of o and hence is a rational
function in p(z) and p’(2). Now for any embedding o of K () in C fixing K,
we can construct a new function f? by acting o on the Laurent expansion
of f around the origin. This again is a rational function in p(z) and @'(2)
as o fixes p and @’. Thus

f(z) = [7(2) = arz(a — o(a))

is also an elliptic function and hence @ = o(«). Since o is arbitrary, we see
that a € K. I

From this and using the Legendre relation
wan — wine = 271,
we deduce immediately:

Corollary 59 Let p(z) be a Weierstrass g-function with algebraic invari-
ants gs,gs and with complex multiplication by an order of the imaginary
quadratic field K. Let w be a mon-zero period and m the corresponding
quasi-period. Then for any 7 € K with (1) # 0, each of these sets

{m,w,e*™ ™} and {w,n,e*™ "}
1s algebraically independent over Q.
Applying this corollary to the two elliptic curves
y? = 4a® — A,

and
y? =42 — 4,

considered earlier leads us to:
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Corollary 60 FEach of the sets
{m,e™,T(1/4),},  {m e ™3 T(1/3)}

18 algebraically independent over Q. In particular, ™ and e™ are algebraically
independent over Q. The same holds for m,T'(1/3) and for =,T'(1/4).

Again, the algebraic independence of 7w and I'(1/3) as well as of = and
I'(1/4) was earlier established by Chudnovsky.

By the theory of complex multiplication, we know that for any natural
squarefree number D, there is an elliptic curve with algebraic invariants
with complex multiplication by an order in Q(v/—D). Thus, we deduce:

Corollary 61 For any positive integer D, the numbers

7 and €e™VP

are algebraically independent over Q.

In a later chapter, we shall apply Nesterenko’s result to study the values
taken by modular forms defined over number fields.

Exercises

1. Show that e* and p(z) have different orders.

2. If B is algebraic and g is a Weierstrass p-function with algebraic
invariants, show that p(2mif) is transcendental.

3. Prove that e* and the Weierstrass (-function are algebraically inde-
pendent.

4. If o is an algebraic point of the Weierstrass ((z) and 3 is an algebraic
number, show that e is transcendental.

5. If p has algebraic invariants gs, g3, show that n/7 is transcendental,
where 7 is a non-zero quasi-period of (.

6. Let y € R.
(a) Prove that |['(iy)|? = %
(b) For y € Q, show that I'(iy) is transcendental.
(¢c) For D > 0 is squarefree and y € Q(v/D), show that T'(iy) is

transcendental.
7. For y € Q and n € N, show that I'(n + iy) is transcendental.

8. For D > 0 squarefree and y € Q(v/D), show that T'(n + iy) is tran-
scendental.



92

Transcendental values of Eisenstein series

9. Let y € R.
(a) Prove that |T'(5 + iy)|? = 2=

eTY+e—TY

(b) For y € Q, show that I'(} + iy) is transcendental.

(c) For D > 0 squarefree and y € Q(v/D), show that I'(3 + 4y) is
transcendental.



Chapter 18

Elliptic integrals and
hypergeometric series

We have already discussed briefly the problem of inversion for the Weier-
strass p-function. In this way, we were able to recover the transcendental
nature of the periods whenever the invariants gs, g3 were algebraic. We
now look at the calculation a bit more closely. Before we begin, it may be
instructive to look at a familiar example. Clearly, we have

sin b dy
0 V1—19? )
But how should we view this equation? Since sinb is periodic with period
27, we can only view this as an equation modulo 27. If sinbd is algebraic,

then, we know as a consequence of the Hermite-Lindemann theorem that b
is transcendental. In this way, we deduce that the integral

b=

=
0o V1—y?
is transcendental whenever « is a non-zero algebraic number in the interval
[_1a 1]

A similar result can be obtained for incomplete elliptic integrals. Recall
that we have written our elliptic curve as

Y2 =4(x —e1)(z — ez)(x — e3).

To reiterate, it is appropriate to consider the extended complex plane with
the point at infinity added and to look at paths in this region (see [61]).
With this in mind, as before we obtain

o(2) dx
- /
oo V4x3 — gox — g3
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which is again to be interpreted as up to periods.
We will need the following fact:

I'(s) :/ e_xxsd—x.
0

T

o0 dt
I[(s) = 2/ 2 2
0

Putting = = 2 gives

t
We will use this to show the following for a,b > 0.

w/2
2/ cos?* 1 9sin?*~1 0do =
0

Indeed, we calculate

I'(a)T'(b) = 4/ / w2071y exp(—2? — y?)dady,
o Jo

and switching to polar co-ordinates, we get that this is

o d /2
2/ p2a+2bg—r’ —TZ / cos?*~ 1 9 sin?0~1 9do.
0 r 0

The special case a = b = 1/2 shows that I'(1/2) = /7.
We can consider our elliptic curve in Legendre normal form, that is, of
the form
Ey: v*=z(x—1)(z -\,

where A € C\{0,1}. In fact, this change of variable works over any field of
characteristic not equal to 2. The j-invariant of E) is easily computed (see
exercise below):

2850\ — X +1)3

TN == -1y

If we change x to Az and y to A\3/2y, then the curve is isomorphic over C

to
v =x(x—1)(z —1/N).

Notice that if A is algebraic, then the change of variables is again algebraic.
Thus, we may suppose (without any loss of generality) that there is a model
for E with |A| < 1. We may express the periods (see [61], for instance) as

0 dx
w1 A) = )
) /;oo Va(z—1)(z =N

and

e dx
wo A = .
¥ /1 Va(x —1)(z—N)
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We now recall the hypergeometric series: for a,b € C and ¢ € C\N, we

define
— (a)n(b)n
F 12) = E T
(a/’ b’ c’ Z) n:0 n!(c)n Z )
where

(a)p=ala+1)---(a+n—1).

A straightforward application of the ratio test shows that this series con-
verges absolutely for |z| < 1 (see exercises below). Thus, it represents an
analytic function in this disc.

It is clear that F'(a,b,c;z) = F(b,a,c;z) and that

F(a,bb;z) = (1—2)""
It is also not hard to see that

Fla,a,1;2) = i <_na>2z”.

n=0

The hypergeometric series satisfies the following differential equation:
2(1—2)F" + (c—(a+b+1)2)F — abF = 0.

Theorem 62 For a complex number X with |\ < 1,
/2
2/ (1 —Asin?0)7Y2d0 = nF(1/2,1/2,1; \).
0

Proof. We use the binomial theorem to expand the integrand as

2 —12_OO _1/2 n . 2n
(1 — Asin0) /—nz;)( " (=)™ sin“" 6.

Integrating this term by term and using Exercise 1, we get the result. [J

Let us again consider the integral

o dx
w2 A) = .
¥ /1 Va(z—1)(z =N

Putting x = 1/t,t = 52,5 = sin § in succession, transforms the integral into

/1 dt :2/1 ds
o v/t —1t)(1 = \t) 0 V(1 —s2)(1—As?)

TF(1/2,1/2,1;\)

w/2 do
01— \sin?6
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A similar calculation for wy(\) shows that the other period is

= irF(1/2,1/2,1,1 - \).

0 dx
w1 A) =
) /;oo Vel —1)(z =N

In the case A = 1/2 observe that wy(1/2) = iws(1/2) and hence the quotient
of these two periods is equal to i. An immediate consequence of Schneider’s
theorem is

Theorem 63 For algebraic A with |A\| < 1, both the numbers
7F(1/2,1/2,1,0) and F(1/2,1/2,1,))
are transcendental.

Proof. The first number is transcendental since it is a period of an elliptic
curve defined over Q. The second number is transcendental since it is this
period divided by 7. [0

Recall that in calculating the circumference of an ellipse with major axis
and minor axis of lengths a and b respectively, we show that it is given by

/2 w/2
4/ Va2 cos? § + b2 sin® 0d6 = 4/ \/(12 — (a2 — b2) sin? 0d0,
0 0
as is easily seen by putting cos? § = 1 —sin? §. We can re-write this integral

as
w/2
4a / V1 — \sin® 646,
0

where A = 1—b%/a?. We may expand the integral via the binomial theorem

to get
4a/ < >(1)”)\" sin®" 0d#.
>

n=0 n
Using the result
/2 T'(a)T(b
2/ cos?* 1 9sin% "1 0do = 7(@ ( ),
0 I(a+10)
we see that we may apply this with a =1/2,b=n+1/2 to get

T T(1/2)T(n+1/2)
2/0 sin“" 8df = F(n+1) .

The last term can be re-written as
ra/2)(n+1/2-)(n+1/2-2)---(n+1/2—-n)I'(1/2) 7r(1/2)n.

n! n!

Putting this all together, we obtain:
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Theorem 64 The circumference of an ellipse with major and minor axes
of lengths a and b respectively is

zmz (1/2> 1y 02

where A =1 — b2 /a®.

The series is in fact a hypergeometric series as is easily seen by noting

that (1/2) —1/2)
(o (7)==

n n!

Thus, the circumference of the ellipse is
2raF(—1/2,1/2,1; \).

There has been some work in trying to determine for which arguments
the general hypergeometric function takes transcendental values. In the
case a, b, c are rational numbers, with ¢ # 0, —1, —2, ..., a theorem of Wolfart
states that if F'(a,b,c;z) is not algebraic over C(z) and its monodromy
group is not an arithmetic hyperbolic triangle group, then there are ony
finitely many values of z € Q for which F(a, b, c; z) is algebraic.

Exercises

1. Show that for any natural number n,

/2 1
2/ sin®" 0df = 7(—1)" ( 2).
0 n

2. Show that the area of the ellipse given by

$2 y2
7+b72:1

is wab.
3. Show that the j-invariant of F) is given by

28(A% — A+ 1)3

J(Ex) = AZ(\—1)2

4. Determine the radius of convergence for the hypergeometric series.

5. Show that F(a,b,b;z) = (1 —z)~*.

Pt -3 ()

n=0
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Chapter 19

Baker’s theorem

In this chapter, we will discuss the following theorem due to Baker.

Theorem 65 (A. Baker, 1966) If a1, ..., au, are non-zero algebraic num-
bers such that log aq, ...,1og oy, are linearly independent over Q, then

1,log a, ..., log
are linearly independent over Q.

Observe that the case m = 1 is a consequence of the Lindemann-
Weierstrass theorem. The case m = 2 implies the Gelfond-Schneider theo-
rem. In 1980, Bertrand and Masser [16] proved an elliptic analog of Baker’s
theorem. For a Weierstrass p-function with algebraic invariants go and g3
and field of endomorphisms k, the following set

Lr={aeC : pla) € QU {x}}

is referred to as the set of elliptic logarithms of algebraic points on E. Here
F is the associated elliptic curve. Let L be the lattice of periods. This k-
linear space Lg is the elliptic analog of the Q-linear space of logarithms of
non-zero algebraic numbers for the exponential case. Bertrand and Masser
proved the following theorem.

Theorem 66 let p be a Weierstrass function without complex multiplica-

tion and with algebraic invariants go, gs. Let w1, -+ ,u, be elements in Lg
such that uy,- -+ ,u, are linearly independent over Q. Then
]-7 Uy, sy Un

are linearly independent over Q.

The analogus theorem for the CM case was earlier established by Masser
[78] and can also be recovered following the techniques employed in the
proof of the above.
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As noted by Bertrand and Masser themselves, their method gives an
alternate proof of Baker’s theorem. In this chapter, we present their proof
of Baker’s theorem. We also recommend the book by M. Waldschmidt [126]
in which a number of different proofs of Baker’s theorem is illustrated.

We begin by noting that Baker’s theorem is a consequence of the fol-
lowing theorem.

Theorem 67 (Main Theorem) Let K be a number field of degree d over Q.
Let 31, ..., 84 be a basis for K over Q. Let aq,...,aq be non-zero algebraic
numbers. Then

Bilogaq + -+ Bylogag € Q

if and only if
loga; =--- =logay = 0.

Let us first see how the above theorem implies Baker’s theorem. Let
ai,...,0q be non-zero algebraic numbers such that logaq,...,logay are
linearly independent over Q. Now suppose that

Pilogas + -+ + Balogag =

where (i, ...,84 and «y are algebraic numbers. Consider the number field
K =Q(f1,-..,B4) and let x1,...,x, be a Q-basis for K. Let

n
Bi = Z YijTj
j=1

for 1 <17 < d, where y;; are rational numbers. Thus, we have

d

n
Zijj =7 where A; = Zyij loga;, 1<j<n.
j=1 i=1

But the A;’s are logarithms of algebraic numbers as y;;’s are rational num-
bers. By the above theorem, each A; is necessarily equal to zero. But since
log oy, ...,log ag are linearly independent over Q, this implies that y;; =0
for all 4 and j. Thus 8; = 0 for 1 < ¢ < d. Hence the above theorem implies
Baker’s theorem.

Let us now begin the proof of the main theorem. The crucial ingredient
in the proof is the following multi-variable generalisation of the Schneider-
Lang theorem we proved earlier. This was proved by Lang [74]. We recall
that for Z = (21, ..., 2.) € C", an entire function F(Z) in r variables is said
to be of finite order of growth if
loglog |F|r

lim sup ,
R—o0 1Og R

where |F|g is the supremum of |F(Z)| on the closed disc |Z] < R.
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Theorem 68 (Lang, 1965) For integers N > r > 1, let f1,...,fn be
entire functions on C" with finite order of growth and of which at least
r+ 1 are algebraically independent. Let K be a number field such that the
ring K[f1,..., fn] is mapped into itself by the partial derivatives 6%1, e
aizr' Then for any subgroup I' of C" which contains a basis of the complex
space C”, not all the values

fi(Z), 1<k<N, zeTl
can lie in K.

The proof of the above theorem, though more involved, runs along similar
lines as in the one dimensional case. We refer to chapter IV of Lang’s book
[75] for the relevant details.

The theory of several complex variables constitutes an essential tool in
the development of modern transcendence theory. We refer to the classic
treatise of Gunning and Rossi [58] for the basic definitions and notions.
However for our purposes, we only need to work with very special type of
entire functions, namely functions of the form

f(E) — eE.E — ealzl—&-m—&-aTzT

where @ = (aq,...,a,) is a fixed vector in C". Clearly, these functions have
finite order of growth.

We deduce the following two corollaries of the above theorem. As before,
for T = (x1,...,24), = (y1,...,ya) € C?, we have the following notation

TY =211 + -+ Tqyd-
Corollary 69 Let N,d with N > d be positive integers and Ti,...,TN

. —=d .
be elements in Q  such that at least d + 1 of these vectors are linearly
independent over Q. Let 4y,...,7,; be elements in C? containing a basis
for C%. Then not all the MN numbers

T,
can be algebraic.
Proof. Consider the N functions

fi(z1, ..., 2q) = 5% = etnat otz ] < < N,

We note that at least d + 1 these functions are algebraically independent
(see Exercise 1). Let I' be the additive subgroup of C? generated by the
vectors Uy, ..., Y- Suppose that the e*¥% are all algebraic. Let K be the
number field generated by the numbers e%i¥; and the coordinates of each
of the vectors Z; = (41, ...,x;q). Then clearly all the hypotheses of Lang’s
theorem are satisfied. However, for all 1 < i < N and Z € I', we have
fi(Z) € K. This contradicts Lang’s theorem. O
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Corollary 70 Let T1,...,%T4 be d elements in @d which are linearly inde-
pendent over Q. Let Ty, ...,7, be elements in C? linearly independent over
C. For1 <i<d, lety; = (yj1,.-.,Yja) and suppose that the kth entries
of each of these d vectors, namely Y1k, -..,yar are all algebraic. Then not
all the d* numbers
oFiT;

can be algebraic.
Proof. As before, let o

1i(2) = e

for 1 <4 < d and define fy411(Z) = 2i, the kth projection function. Let K
be the number field generated by the numbers e¥i¥i, the co-ordinates Tij
of the vectors T; = (241, . ..,;q) and the kth coordinates Y, of the vectors
y,. Taking I' to be the additive group generated by the vectors 7, we see
that for all 1 < i < d+1and z € T', f;(2) € K. This again contradicts
Lang’s theorem. [J

Let us now prove the Main theorem. We have a number field K of
degree d with 1,...,84 € K constituting a basis. Further, a1,...,aq are
non-zero algebraic numbers such that

A=pilogay + -+ Bylogag € Q.
Our goal is to prove that
logay; =---=logay = 0.

Let {o1,...04} be the embeddings of K in C. We define the following
complex numbers

Xi = oi(fr1)logag + -+ 0i(Ba) log ay

for 1 < i < d. Consider the matrix M defined as

M = (0i(Bj))1<i j<a-

Note that this matrix is non-singular (see Exercise 2). Thus if each of the
A; is equal to zero, necessarily log a;’s are all equal to zero. So we may
assume that not all the \;’s are equal to zero.

We first consider the case when none of the \;’s are equal to zero, that
is

AL Ag #0.

We now construct vectors z; and ; as in Corollary 2. First for 1 <7 < d,
let

x; = (0'1(/81')’ cee 7Ud(ﬁi))’
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the vector consisting of all the conjugates of §; in C. Non-singularity of

—d
the matrix M introduced above ensures that these d elements in Q are
linearly independent over Q. Now we define the vectors y; for 1 < j < d as
follows,

¥; = (Mo1(By), - - -, Aaoa(B;))-

Consider the matrix (X;0i(58;)),<; j<4- Its determinant is non zero, being
equal to det(M)A; ... Ag. Thus the d vectors above are linearly independent
over C. If oy is the identity embedding of K, then the kth entries of
these d vectors are given by y;i = AS; which are algebraic numbers for all
1 < j <d. Thus we are in the situation to apply Corollary 2 which implies
that not all the d2 numbers e%'Yi can be algebraic. Let us now explicitly
evaluate the numbers 7;.7,;. We have,

d
77, = Y_oi(Bi)Noi(B;)

[

I
M=~

al(BiB) N

~

1

I
M=~
M=~

o1(BiBj)oi(Bs) log av

N
Il
-

s=1

it

However, the number A, = 27:1 01(BiB;Bs) is the trace of §;5;8s in K
and hence rational. Thus,

I
M=~
M=~

oy (ﬂiﬂjﬂs)) log avs.

s 1

efi.ﬂj — eAllogozl---JrAd log ag c @

This is a contradiction.
In the second case, suppose that some of the A;’s are equal to zero.
Without loss of generality, suppose that

A13£O7"'7A7'7é07k7'+1:"':Ad:O

with 1 <7 < d. In this case also, we define the vectors z; and y; analogous
to the previous case. More precisely, for 1 < i < d, we define

Ei = (Ul(ﬁi)a sy O-T(ﬁ’i)) € @T
and for 1 < j < d, we have

7, = (mor(5). .- Ao (B)) €T .
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Note that the rank of the following r X d matrix
M = (X\ioi(B;))

where 1 < i < rand 1 < j < d is equal to r. Thus the d vectors Y, do
contain a basis for C". Again by Corollary 1, not all the d?> numbers %Y
can be algebraic. But an explicit evaluation of the numbers Z;.j; as above
will show that

e"Yi e Q

for all ¢ and j, hence a contradiction. This completes the proof of the Main
theorem and hence Baker’s theorem.

Exercises
. o—=d . . .
1. ZT1,...,Tn be N elements in Q which are linearly independent over
Q. Consider the N functions
fi(z1, ... 2q) = 517 = etnatotTaza ) < < N

Show that these functions are algebraically independent.

2. Let G be an abelian group and o1,...,04 : G — C* be d distinct
homomorphisms. Prove that these functions are linearly independent
over C. Hence conclude that the matrix M in the proof of the main
theorem is invertible.

3. If f and g are entire functions of finite order p; and ps respectively,
show that the function fg is of finite order p with p < max(p1, p2)-

What about f + g?
/1 dx
0 1 + 3?3

is transcendental. Can you generalise to rational functions with alge-
braic coefficients? (See [122].)

4. Show that



Chapter 20

Some applications of
Baker’s theorem

Let us first derive some important corollaries of Baker’s theorem.

Corollary 71 If oy, ...,y and B1, ..., Bm are algebraic with «;’s non-zero,
then
Bilogag + -+ + By log ayy,

is either zero or transcendental.
Proof. We proceed by induction on m. This clearly holds for m = 1 by the

Lindemann-Weierstrass theorem. Now assume the validity of the corollary
for m < n. We now proceed to prove it for m = n. Suppose not. Then,

ﬁl logoq ++6n IOgOén :60 (201)

is algebraic and By is non-zero. By Theorem 65, log a, ..., log o, must be
linearly dependent over Q. That is, there exist rational numbers cq, ..., ¢y,
not all zero such that

cilogay + -+ ¢y loga, = 0. (20.2)

Say that ¢, # 0, without any loss of generality. Using this relation, we can
eliminate log v, from our original relation (20.1) and deduce a contradiction
by induction. Indeed, multiplying (20.1) by ¢, and relation (20.2) by 3,
and subtracting, we get that

Brlogan + -+ B, 1log a1 = ¢ufo
which is not zero. We can now apply induction to deduce the corollary. O

Thus, any algebraic linear combination of logarithms of algebraic num-
bers is either zero or transcendental. The next corollary represents a vast
generalization of the Gelfond-Schneider theorem.
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Corollary 72 If ay, ..., o, and Bg, ..., Bm are non-zero algebraic numbers,

then,
650 O/fl . 043{"’

18 transcendental.
Proof. If the number were algebraic and equal to au,41 say, then, we get
Brlogag + -+ + B logay, —logag, 11 = —B # 0.

This is a contradiction to the previous corollary. [

Corollary 73 afl -~ abm s transcendental for any algebraic numbers o,
..., Qi Other than O or 1 and any algebraic numbers By, ..., By with 1, B, ...,
Bm linearly independent over the rationals.

Proof. It suffices to show that for any algebraic numbers a;, ..., a,, other
than 0 or 1, and any algebraic numbers f1, ..., 8,, linearly independent over
the rationals, we have

Brlogay + -+ B log auy # 0.

If we have this for every m, then we can apply this result with m replaced
by m + 1 and 8,,+1 = —1 to derive a contradiction (since —1, 51, ..., Bm
are linearly independent over Q). We therefore proceed by induction on m
which is clearly true for m = 1. Suppose we have proved it for n < m.
If log ay, ..., log oy, are linearly independent over @@ then the result follows
from Theorem 65. So let us suppose otherwise. Then, there are rational
numbers c, ..., ¢;, not all zero such that

cplogag + -+ 4 ¢ log ayy, = 0.

Without any loss of generality, let us suppose ¢, # 0. We may use this
relation to eliminate log o, to obtain

(cmfr — c1Bm)logar + -+ + (¢mPBm—-1 — Cm-1Pm) log apm—1 = 0.
But the m — 1 numbers
cmBP1 — c1Bmy s CmBm—1 — Cm—1Bm
are linearly independent over Q for otherwise,
Ai(emBr — c1Bm) + -+ + Am—1(cmBm—1 — em—18m) =0

for some rational numbers Ay, ..., A,,_1 not all zero. But re-arranging this,
we find

em(A1fr+ -+ Ap1Bm—1) — (Aicr + -+ A—16m—1)Bm = 0.

Since f1, ..., B are linearly independent over Q, we deduce that A; = --- =
A,—1 =0, a contradiction. By induction, we derive a contradiction. [J
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Corollary 74 7+ log « is transcendental for any algebraic number o # 0.
e ™8 s transcendental for any algebraic numbers o, B with B # 0.

In 1966, Baker proved a quantitative version of his theorem. Such ver-
sions now fall under the general heading of effective lower bounds for linear
forms in logarithms.

Theorem 75 (Baker, 1966) Let oy, ..., ., be non-zero algebraic numbers
with degrees at most d and heights at most A. Further, let By, - , Bm be
algebraic numbers with degrees at most d and heights at most B > 2. Then,
either

A= o+ Bilogar + -+ + By logam

equals zero or |A| > B~C where C is an effectively computable constand
depending only onm,d, A and the original determinations of the logarithms.

The estimate for C' takes the form C’(log A)*® where x depends only on
m and C’ depend only on m and d. Let us note that the special case of
m = 1 of the above theorem leads to results of the form

|logar — | > B~¢

for any algebraic number a not zero or 1 and for all algebraic numbers of
degree at most d and heights at most B > 2. Here, C' depends only on d
and «. In particular, we can derive results of the form

|m — B8] > B~°.

Indeed, N.I. Feldman had already established the above inequality with C
of the order of dlogd.
Further, when we restrict to the case when 3 is a rational number, these

inequalities can be refined. For instance, for m we have the following lower

bound
I —p/ql > q*

for all rationals p/q (¢ > 2). This was established by Mahler. On the other
hand, we have the following lower bound

|e7r _p/q‘ > q—cloglogq

for all rationals p/q and where ¢ is an absolute constant. This was proved
by Baker.

In 1993, A. Baker and G. Wiistholz [10] proved a sharper form of these
theorems by offering a quantitative version of Baker’s original theorem. We
state a special case of their theorem.

Theorem 76 (Baker-Wiistholz, 1993) If o = 0 and 1, ..., Bm are integers
of absolute value at most B, then either A =0 or

|A| > exp(—(16md)*™ T (log™ A) log B).
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Finding sharp lower bounds for linear forms in logarithms of algebraic
numbers constitutes an important theme in transcendence theory. We refer
to the interested reader the book of Baker [8] and the recent monograph of
Baker and Wiistholz [11] for further details.

We now apply Baker’s theory to the study of L(1, x) where L(s, x) is the
classical Dirichlet L-function attached to a non-trivial character x. This is
a prelude to the theme of applying Baker’s theory to more general Dirichlet
series which we take up in later chapters.

Let x be a non-trivial Dirichlet character mod ¢ with ¢ > 1. For s € C

with Re(s) > 1, let
_ i x(n)
nS

n=1

be the associated Dirichlet L-function. It is classical that L(s,x) extends
to an entire function and that

L(1, x) :ixn
n=1 n

Furthermore, L(1,x) # 0 by the celebrated theorem of Dirichlet. We are
interested in the algebraic nature of L(1,x). Now for any such x, let

q
1 Z X —27rimn/q
q =1

be its Fourier transform. By orthogonality, we have

)A((m)627rimn/q.

M=

x(n) =

3
I

Note that x(q) = 0. Now we are ready to prove the following:

Theorem 77 If x is a non-trivial Dirichlet character mod q with ¢ > 1,
then L(1,x) is transcendental.

Proof. By the previous discussions, we have
L=y X
n
n=1
qg—1

— 1
— - - 2mimn/q
DD K(me

n=1 m=1

== 37 X log(1 = e,
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This is a non-zero linear form in logarithms of algebraic numbers with
algebraic coefficients. By Baker’s theorem, this is transcendental. [J

We end the chapter with one of the spectacular applications of Baker’s
theory which is the explicit determination of all imaginary quadratic fields
with class number one. This problem has a venerable history. We recom-
mend the illuminating expository article of Goldfeld [46] and the recent
monograph of Baker and Wiistholz [11] for a more detailed account of this
topic.

Gauss conjectured that the only imaginary quadratic fields Q(v/—d),
with d > 0 and squarefree, that have class number one are given by

d=1,2,3,7,11,19,43, 67, 163.

In 1967, A. Baker [7] and H.M. Stark [117] independently solved this con-
jecture. We indicate below the main features of Baker’s argument using
linear forms in logarithms.

We shall be needing some familiarity with algebraic number theory. We
suggest ([73], [113]) as possible references. Recall that if k£/Q is a quadratic
extension, its Dedekind zeta function (i (s) factors as

Ck(s) = C(s)L(s, x) (%)

where x is a quadratic Dirichlet character. In fact if D is the discriminant
of k, then we may write k = Q(vD) and x(n) = (£) is the Kronecker
symbol. The celebrated class number formula of Dirichlet can be stated as
follows. If k is an imaginary quadratic field,

2mh(k)

L(l,x) = ——==, D<0
wey/ | D]
and if k is a real quadratic field,
2 1
L(1,x) = 2h(k) log ek D>0

vD '
where h(k) denotes the class number of k and € is the fundamental unit of

k and wy, is the number of roots of unity in k. We may write (*) in another
way, using zeta functions attached to binary quadratic forms. Given a form

f(z,y) = az® + bay + cy®

with discriminant D = b?—4ac < 0, we may associate the following function

! 1
C(S:f)zz W’

where the dash indicates (m,n) # (0,0). One can show that (s, f) extends
to the entire complex plane, apart from a simple pole at s = 1. Kronecker’s
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limit formula explicitly gives the residue and the constant term in the Lau-
rent expansion of ((s, f) at s = 1. Using the standard equivalence between
binary quadratic forms of discriminant D and ideal classes of k, we may
write (x) as

G(s) = 5 ¢, )
f

where the sum is over a complete set of inequivalent quadratic forms with
discriminant D. In other words,

We may twist this by a Dirichlet character y; to get
1 7 xa(f(m,n))
L L == ]
(5, x1)Ls, 0x01) = 5 Ef mE . Fm )

By classical theory, the inner sums are Mellin transforms of modular forms
of weight one. The behaviour at s = 1 of the inner sum can be determined
by Kronecker’s second limit formula (see [73], for instance) when x; is non-
trivial. We are especially interested in applying this for the case

= (7)) wd am=(2)

with Dy > 0. Using the limit formula, we get

7T2 1la > ;
L(LXl)L(LXXl) = F H (1 — ;2> ; X a( )+Z Z Areﬂzrb/Duz (**)

p|D1 f r=-—o0

where for r # 0,
< 27T|7’| e—s/aDl
D

|Ar|

where s = ~”L and Ay = 0 unless D; is the power of a prime p in which
\/ﬁ P p p
case 231 (a)
mx1(a
Ag = —————=—==logp.
D1+/|D|

Now suppose Q(v/D) has class number one. Then by genus theory (see
for example, [113]), —D = 3 (mod 4) and is necessarily a prime assuming
—D > 2. Moreover, as the class number is one, there is only one form (up
to equivalence) which we can take to be

1-D
sc2—|—a:y+ (4) y2.
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By Dirichlet’s class number formula,

2h1 loge
L(LXI) = %7

where hp is the class number of Q(v/D;) and €; is the fundamental unit
attached to this real quadratic field. The quadratic character yy; corre-
sponds to the imaginary quadratic field

Q(vDDy)

and we have
hgﬂ'

L(1, = —,
( XX1) |DD1|

where hs is the class number of Q(y/|DD1|).
We will choose Dy appropriately. Assuming |D| > Dj so that (D, D) =
1, we obtain from (xx),

1 Di+/|D|
2h1h210g€1—%D1\/|D| H (1_p2> S%" Z |Ar].

p|D1 r==00

If we chose Dy such that it is not a prime power, we are ensured Ag = 0.
We will choose D; = 21 and D; = 33 and in both cases Q(v/D1) has class
number one. Using the upper bounds for |A,|, we obtain for |D| large
enough and Dy = 21,

32 /
thOgEQ—ﬁﬂ' /|D|’ <e T |D|/100

where hg is the class number of Q(v/21D) and ez is the fundamental unit
of Q(v/21). Similarly for D; = 33, we obtain

80 /
hglOgEg—ﬁﬂ' /|D|’<e—7'r |D]/100

where hs is the class number of Q(v/33D) and €3 is the fundamental unit
of Q(v/33). By eliminating the m+/|D| term, we obtain

135hs log €2 — 22h3 log €3] < 57~ ™V1PI/100,

The terms hy and hz can be bounded effectively by an inequality of the
form

ha, hs < c1v/|D|log |D|

with c; effectively computable. By Baker’s theory on lower bounds for
linear forms in logarithms, we have

|35h2 10g €9 — 22h3 log 63‘ > B¢
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where B = max(35hg,22h3) and c is an effectively computable constant
(dependent on €3 and e3). We obtain,

e—c2log Dl - |35h2 log ea — 22h3 loges| < 57e™ ™V |Dl/100

from which |D| is effectively bounded. Then, one explicitly determines a
bound for |D| which is of the order of 105%°.

Heilbronn and Linfoot had previously shown that there are at most ten
imaginary quadratic fields with class number one and Lehmer had given a
lower bound for the tenth fictitious prime p > 163 such that Q(,/—p) has
class number one. This lower bound was of the order of 10°. However,
this lower bound was greatly improved by Stark [116] who showed that
the lower bound is of the order of e!°. Thus comparing with the upper
bound obtained before, the classification of all imaginary quadratic fields
with class number one is done.

This method extends to determine effectively all imaginary quadratic
fields with class number two and has been carried out by Baker [7] and
Stark [117]. There are precisely 18 such fields.

In 1976, D. Goldfeld ([45], [44]) used the theory of elliptic curves to ob-
tain an effective lower bound for the class number of an imaginary quadratic
field. However, his proof was conditional upon the existence of an elliptic
curve of Mordell-Weil rank 3 and whose associated L-series has a zero of
order 3. In 1983, B.H. Gross and D. Zagier [50] found such an elliptic curve.
Combining this with Goldfeld’s result led to the following: for every e¢ > 0,
there is an effectively computable constant ¢ > 0 such that the class num-
ber of Q(v/D) is greater than c(log|D|)!~¢. In 1984, Oesterlé [95] refined
the argument to give the lower bound

1 [ 2P ]
7oa0 (512D 11 (1_ p+1 >

p|D
p#|D|

for the class number of the imaginary quadratic field Q(+/D). The scenario
for class numbers of real quadratic fields is expected to be different. It is
conjectured that there are infinitely many real quadratic fields with class
number one. However, we do not even know if there are infinitely many
number fields with class number one.

Exercises

1. Let P(z) be a polynomial of degree r > 2. Assume that P(x) has
algebraic coefficients and that all of its roots are rational and not
integral. Show that

o0

Zl/P(n)

n=1
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is either zero or transcendental. [Hint: Consider the partial fraction
decomposition of 1/P(x).]

. Show that the conclusion of the previous exercise is still valid for the
sum

> Q(n)/P(n)
n=1
where Q(z) is also a polynomial with algebraic coefficients and the

degree of Q(z) is at most r — 2.

. Let f be an algebraic-valued function defined on the integers. Suppose
that for some natural number ¢ > 1, we have f(n +¢) = f(n) for all
natural numbers n. Suppose further that

Show that -
Z f(n)
n=1 n
converges and that it is either zero or a transcendental number.

. Suppose that the sum

oo n
z
F(z;x) ::Z
nzln—l—x

converges. If z is algebraic and z is rational, show that the sum is
either zero or a transcendental number.
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Chapter 21

Schanuel’s conjecture

One of the most far reaching conjectures in transcendence theory is the
following due to S. Schanuel:

Schanuel’s Conjecture: Suppose a1, - , a,, are complex numbers which
are linearly independent over Q. Then the transcendence degree of the field
Q(ala T ,an,eal, T 760471)

over QQ is at least n.

This conjecture is believed to include all known transcendence results
as well as all reasonable transcendence conjectures on the values of the
exponential function. Note that when the «;’s are algebraic numbers, this
is the Lindemann-Weierstrass theorem.

In this chapter, we derive some remarkable consequences of this con-
jecture. We begin with the following special case of Schanuel’s conjecture.
This generalises Baker’s theorem. Let us refer to it as the weak Schanuel
conjecture.

Weak Schanuel’s Conjecture: Let «1,---,a, be non-zero algebraic
numbers such that log ay, - - - ,log «;, are linearly independent over Q. Then
these numbers are algebraically independent.

This special version itself has strong ramifications. For instance, it suf-
fices to derive transcendence of special values of a number of L-functions
arising from various analytic and arithmetic contexts.

The following is an important consequence of the weak Schanuel’s con-
jecture.

Theorem 78 Assume the weak Schanuel’s conjecture. Let ayq,--- ,ay, be
non-zero algebraic numbers. Then for any polynomial f(xz1, -+ ,x,) with
algebraic coefficients such that f(0,---,0) =0, f(logai, - ,loga,) is ei-
ther zero or transcendental.

Proof. We use induction on n. For n = 1, it is true by the classical
Lindemann-Weierstrass theorem. Now for n > 2, let f(xy,---,x,) be a
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polynomial in Q[z1,--- ,x,] with f(0,---,0) = 0. Further, suppose that

A:= f(logaq, - ,logay) is algebraic. By the weak Schanuel’s conjecture,
the numbers log a1, - - - ,log o, are linearly dependent over Q. Then there
exists integers c¢q, - - - , ¢, such that

cilogag + -+ cplogay, = 0.

Suppose ¢; # 0. Then loga; = 75(02 logag + - -+ + ¢, log v, ). Replacing
this value of log a7 in the expression for A,, we have

A=g(logay,--- ,logay),

where g(x1, -+ ,x,-1) is a polynomial with algebraic coefficients in n — 1
variables. Then by induction hypothesis A = 0. This completes the proof.
O

Now we proceed to derive some more interesting consequences of Schanuel’s
conjecture:

Theorem 79 Assume that Schanuel’s conjecture is true. Let o # 0,1 be
algebraic. Then loga and loglog a are algebraically independent.

Proof. Note that for a € Q\ {0, 1}, loga and loglog o are linearly inde-
pendent over Q. We apply Schanuel’s conjecture to the numbers log «
and logloga. Then we see that the transcendence degree of the field
Qlog a,loglog ar, @) is two and hence log o and loglog v are algebraically
independent. ]

Theorem 80 Assume that Schanuel’s conjecture is true. If ai,---,a, €
Q are linearly independent over Q, then mw, e, ---  e* are algebraically
independent. In particular, e and 7 are algebraically independent.

Proof. We apply Schanuel’s conjecture to the Q-linearly independent num-

bers aq, -+ ,a, and 7 to get the result. [

Theorem 81 Assume that Schanuel’s conjecture is true. If oy, -+, ay, are
algebraic numbers such that i,aq, -+, ap are linearly independent over Q,
then w,e*1™ ... e*™ are algebraically independent.

Proof. Apply Schanuel’s conjecture to the Q-linearly independent numbers
i, aqm, -+, a7 to get the result. [J

Thus Schanuel’s conjecture implies that m and e™ are algebraically in-
dependent. This has been established unconditionally by Nesterenko.

Theorem 82 Assume that Schanuel’s conjecture is true. Then 7€ is tran-
scendental.
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Proof. By Nesterenko’s result, we know that m and log7w are linearly
independent over Q. We apply Schanuel’s conjecture to the Q-linearly
independent numbers 1, i and log 7 to conclude that e, 7 and log 7 are al-
gebraically independent. Now apply Schanuel’s conjecture to the Q-linearly
independent numbers 1,logm,im + elogm, elogw. O

Let us define a Baker period to be an element of the Q-vector space
spanned by logarithms of non-zero algebraic numbers.

Theorem 83 Assume Schanuel’s conjecture is true. Ifaq,--- , ay are non-
zero algebraic numbers such that log oy, - -+ ,log au, are linearly independent
over Q, then logay,--- ,logay,, logm are algebraically independent. In par-
ticular, log m is not a Baker period.

Proof. Since logas,--- ,loga, are linearly independent over Q, the num-
bers log aq, - - - ,log av, are algebraically independent by Schanuel’s conjec-
ture.

First suppose that m,logai, - ,loga,, are linearly dependent over Q,
ie.

m=filogay + - + By log an,

where 3; € Q and not all of them are zero. Without loss of generality,
assume that f; # 0. Then 7, logas,--- ,loga, are linearly independent
over Q. Now applying Schanuel’s conjecture to the Q-linearly independent
numbers 7, log s, - - -, log ay,, log ™ we see that log aq, - - - , log a,, log 7 are
algebraically independent.

Next suppose that 7 and log a1, - - - , log v, are linearly independent over
Q. Then we apply Schanuel’s conjecture to the Q-linearly independent
numbers i, log aq, - - - ,log oy, log ™ to get the required result. [

Theorem 84 Assume Schanuel’s conjecture is true. If a is a non-zero
Baker period, then 1/« is not a Baker period. In particular, 1/m is not a
Baker period.

Proof. Since « is a Baker period, we can write
a = f1logdy + -+ By logdy,

where 3;,6; € Q \ {0}. If 1/a is also a Baker period, then
1
o = mlogan -4 logay,

where v;,; € Q\ {0}. This implies that

1= f(logéy, - ,logdy,,logay, -, logag), (21.1)
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where f is a polynomial in Q[zy, - ,Z,4%] With £(0,---,0) = 0. Then by
the right hand side of (21.1) is either zero or transcendental. In either case
it is a contradiction and the result follows. O

One can show that Schanuel’s conjecture implies that e® is transcen-
dental (see Exercise 1). We refer to the papers of Waldschmidt [129] and
Brownawell [20] for an interesting theorem in this context, namely that
either e® or e is transcendental. This was a conjecture of Schneider.

We note that M. Kontsevich and Zagier [70] have introduced the notion
of periods. A period is a complex number whose real and imaginary parts
are values of absolutely convergent integrals of algebraic functions with
algebraic coefficients, over domains in R™ given by polynomial inequalities
with rational coefficients. Clearly all algebraic numbers are periods. On
the other hand, « is a period for it is expressible as

1
71':// dxdy:2/ V1 —22dz.
z2+4+y2<1 -1

Baker’s theorem implies that non-zero Baker periods are examples of tran-
scendental periods. Moreover, the periods form a ring. It is an open ques-
tion to determine whether the group of units of this ring contains only the
obvious units, namely the non-zero algebraic numbers. We shall come back
to these periods in the last chapter.

We now apply Schanuel’s conjecture to study some special values of the
Gamma function.

Theorem 85 For any rational number x € (0,1/2], the number
logT'(z) +logI'(1 — x)
is transcendental with at most one possible exception.
Proof. Using the reflection property of the gamma function, we have
logT'(z) + log'(1 — x) = log ™ — log sin 7.
If 1 and x5 are distinct rational numbers with
logT(z;) +1logl'(1 —2;) €Q, i=1,2

then their difference logsin mxs — logsin 7wz is an algebraic number. But
this is a non-zero Baker period and hence transcendental. [J

The possible fugitive exception in the above theorem can be removed if
we assume Schanuel’s conjecture
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Theorem 86 Schanuel’s conjecture implies that
logT'(z) +logI'(1 — x)
1s transcendental for every rational 0 < x < 1.

Proof. As noticed in the previous section, Schanuel’s conjecture implies
that for any non-zero algebraic number «, the two numbers e and 7w are
algebraically independent. Suppose o = logI'(z) +1logI'(1 — z) is algebraic.
Then e®sin(rz) = 7 which contradicts the algebraic independence of e*
and 7. [J

We also have,

Theorem 87 Schanuel’s conjecture implies that for any rational x € (0, 1),
at least one of the following statement is true :

1. Both T'(z) and T (1 — z) are transcendental.

2. Both logT (z) and logT (1 — x) are transcendental.

Proof. If (1) is true, there is nothing to prove. Without loss of generality,
suppose that I'(x) is algebraic for some x € Q. Then logI'(z) is a Baker
period. Since

logT(1 — z) = —logI'(z) + log m — log sin a7,
therefore it follows that logI'(1 — ) is transcendental. [J

The logarithms of the gamma function as well as log 7 are of central
importance in studying the special values of a general class of L-functions.

Finally, we now apply Schanuel’s conjecture in the investigation of some
special values of Dedekind zeta functions. We refer to [52] for a more
detailed account. The relevant details from algebraic number theory can
be found in the books of Lang [72] or Neukirch [94]. Let K be a number
field of degree n. For R(s) > 1, the Dedekind zeta function of K is defined

C(s) = Zﬁ

where the sum is over all the integral ideals of Ok, the ring of integers of
K. When K = Q, this is the Riemann zeta function. Analogous to the
Riemann zeta function, (x(s) is analytic for R(s) > 1 and (s — 1)k (s)
extends to an entire function with

271 (27)"2h
lim (s — 1)Cie(s) = RessorCl(s) = 2o 2m)hicRic
s—1+ WK |dK|

9
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where r1 is the number of real embeddings, 2r; is the number of complex
embeddings, hx is the class number, Ry is the regulator (which is known
to be non-zero), wg is the number of roots of unity in K and dg is the
discriminant of K.

We are interested in the nature of Ress—1(x(s) and the regulator R.
Because of the presence of 7, the transcendence of one does not imply the
transcendence of the other unless K is a totally real field.

Theorem 88 Assume the weak Schanuel’s conjecture. Let K be a number
field with unit rank at least 1. Then both the requlator Rk and Ress—1(x (s)
are transcendental.

Proof. By the class number formula,

2" (271’)7"2 hg Ry
wy/lde|

Wh_ere r1 and 27y be the number of real and complex embeddings. Let
u9) be the j-th conjugate of u € K where j runs through the embeddings
modulo complex conjugation. Let

Ress=1Ck(s) =

{ulau27"' 7u’r}

be a set of generators of the ordinary unit group modulo the roots of unity.
Then the regulator Rx, up to an algebraic multiple, is given by

1 dogluf] -+ logfuf]

' '+1)‘

r+1) \ log |u£7

1 log|u;
Clearly, by Theorem 78, the regulator Rk is transcendental.
Further,

R =F (log(—l)7 log |ugl) |,--- ,log |u£r+1) ‘)

where F' is a polynomial with algebraic coefficients whose constant term
is zero. Assume that the weak Schanuel’s conjecture is true. Then by
Theorem 78, Ress—1(k (s) is necessarily transcendental. [J

In the p-adic set up, it is not known if the p-adic regulator of a number
field does not vanish. This is referred to as Leopoldt’s conjecture. It is
known to be true for abelian extensions of Q and imaginary quadratic fields
(see [5], [21]). We also refer to an interesting work of Colmez [31] in this
context where he gives a formula for the residue at s=1 of the p-adic zeta
function of a totally real field.
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One can extend these study to special values of Artin L-functions. The
guideline for such an investigation is a program envisaged by Stark [118].
We refer to [80] for a more detailed account of Artin L-functions. Let K/k
be Galois extension of number fields with Galois group G = Gal(K/k).
Corresponding to any finite dimensional representation (¢, V) of G with
character y, the Artin L-function is defined by

L(s.x, K/k) = [ [ det(1 = N(P)"*¢(o5)ly,15) "
P

where P runs over all the prime ideals in O, [ is a prime ideal lying over
P, Ig is its inertia group and og is the associated Frobenius element in the
Galois group. Stark [118] has made the following conjecture:

Conjecture (Stark). Suppose x does not contain the trivial character g
as a constituent. Then

W (x)207b

L BIR) = (N e

O(X)R(X)-

We refer to the article of Stark for descriptions of the terms involved.
Stark proved the above conjecture for all rational characters.

Theorem 89 Assume that the weak Schanuel’s conjecture is true. Then
for any rational nontrivial irreducible character x, L(1, x, K/k) is transcen-
dental.

Proof. Let x be a character as above. Then as proved by Stark

W (x)2¢m"
(k| N ()12

In the expression on the right hand side, there are two possible transcenden-
tal objects, namely 7° and R(). But we have a description of the number
R(x). It is the determinant of an a by a matrix whose entries are linear
forms in logarithms of absolute values of units in K and its conjugate fields.
For instance, when k is equal to Q, the entries of this matrix are given by
Cij = Z a;j(o)log(|e?|) where A(c) = (a;;(0)) is a representation of G
ceG

whose character is x and e is a Minkowski unit. Since log(—1) = im, the
residue is the value of a polynomial of the form mentioned in Theorem 78
evaluated at logarithms of algebraic numbers. It is classical that for any
irreducible character x of G, for all ¢t € R, L(1 + it, x, K/k) # 0 and hence
by appealing to Theorem 78, we see that L(1,x, K/k) is transcendental
under the weak Schanuel’s conjecture. [

L(1,x, K/k) = O(X)R(X)-

For more details and other applications to transcendence of Petersson
norms of certain weight one modular forms, the reader may consult [52].
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We end this chapter by mentioning a generalization of Schanuel’s con-
jecture which has been formulated in a recent work [56]. Let us first set up
the preamble which motivates such a generalisation.

The conjecture of Schanuel is about the algebraic independence of the
values of the exponential function. Analogous to the exponential setup,
there has also been remarkable progress in the elliptic world ( see the survey
article [128], for instance).

For a Weierstrass p-function with algebraic invariants g and g3 and
field of endomorphisms k, the following set

Lr={aeC : p(a) e QU{o0}}

is referred to as the set of elliptic logarithms of algebraic points on E. Here
FE is the associated elliptic curve. Let Q be the lattice of periods. This
k-linear space L is the elliptic analog of the Q-linear space of logarithms
of non-zero algebraic numbers for the exponential case. The question of
linear independence of elliptic logarithms, analogous to Baker’s theorem,
has been established by Masser for the CM case [78] and Bertrand and
Masser for the non-CM case [16].

The algebraic independence of the values of the Weierstrass p-function
is more delicate. When the Weierstrass p-function has complex multipli-
cation, the following analogue of the Lindemann-Weierstrass Theorem has
been proved by Philippon [96] and Wiistholz [133].

Theorem 90 (Philippon/Wiistholz)
Let p(z) be a Weierstrass p-function with algebraic invariants go and gs
that has complex multiplication. Let k be its field of endomorphisms. Let

a1, Qg, - ,Qn

be algebraic numbers which are linearly independent over k. Then the num-
bers p(aq), -+, p(an) are algebraically independent.

For the non-CM case, so far only the algebraic independence of at least
n/2 of these numbers is known by the work of Chudnovski [30].

In his seminal work, Nesterenko proved the following general result (see
[92], Chapter 3, Corollary 1.6) which involves both exponential as well as
elliptic functions.

Proposition 91 Let p be the Weierstrass @-function with algebraic invari-
ants go and gz and with complex multiplication by the field k. If w is any
period of p(z), n the corresponding quasi-period and T is any element of k
which is not real, then each of the sets

27rz'7'}

{T‘-vw’e {71-7777627”.7}

are algebraically independent.
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With these background in mind, the following elliptic-exponential ex-
tension of the conjecture of Schanuel has been formulated in [56].

Congjecture: Let p(z) be a Weierstrass p-function with algebraic invari-
ants go and g3 and lattice 2. Let k be its field of endomorphisms. Let

1,000, ,ar’a7.+1,...an

be complexr numbers which are linearly independent over k and are not in
Q. Then the transcendence degree of the field

o

Q(O[l,OLQ,"‘7O[n,€ 7"'76ar

s o(rrr) s pan))

over Q is at least n.

This conjecture is a special case of a more general conjecture formulated
by Bertolin [14] (one needs to specialize “conjecture elliptico-torique” on p.
206 of [14] to the case of a single elliptic curve).

It is worthwhile to mention that Schanuel also formulated an analogous
conjecture for formal power series which is the following;:

Let y1, ..., yn € tC[[t]] be n formal power series which are linearly inde-
pendent over Q. Then the field extension C(t)(y1, ..., Yn, exp(y1), .., €xp(Yn))
has transcendence degree at least n over C(t).

This has been proved by James Ax [6] in 1971. We also note that D. Roy
[105] has formulated an alternate algebraic approach towards Schanuel’s
conjecture. Finally, Schanuel’s conjecture has been found to have implica-
tions in other contexts like model theory and commensurability of locally
symmetric spaces (see [136], [98] for instance).

Exercises

1. Assuming Schanuel’s conjecture, show that e® is transcendental.

2. Assuming Schanuel’s conjecture, and not using Nesterenko’s theorem,
show that m and log 7 are algebraically independent.

3. Let f1, ..., B, be linearly independent algebraic numbers over the ra-
tionals. Suppose that aji,...,q,, are algebraic numbers such that
log aq, ..., log au,, are linearly independent over Q. Assuming Schanuel’s
conjecture, show that

B1

e’ .. eP logay, ..., log o,

are algebraically independent over the rationals.

4. Let z1,...,z, be complex numbers. Show that zi,...,z, are alge-
braically independent over the rationals if and only if they are al-
gebraically independent over the field of algebraic numbers.
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Define a sequence of numbers FE, recursively as follows. Ey = 1
and F,, = exp(F,_1) for n > 1. Show for any finite subset A of the
natural numbers, the set of numbers F, with a € A is an algebraically
independent set of numbers, assuming Schanuel’s conjecture.

Define a sequence of number P, recursively as follows. Py = 7, and
P, = w1 for n > 1. Assuming Schanuel’s conjecture, show that
any finite subset of the set of P,’s is algebraically independent over
the rationals.

Show that if aq, ..., @, are Q-linearly independent algebraic numbers,
then Schanuel’s conjecture is true. (This is a consequence of the
Lindemann-Weierstrass theorem. See Theorem 8 in Chapter4.)



Chapter 22

Transcendental values of
some Dirichlet series

There is a large collection of Dirichlet series defined purely arithmetically
that have been conjectured to have analytic continuation and functional
equations. Deligne has formulated a far-reaching conjecture regarding the
special values of these series at special points in the complex plane and one
would like to know if these special values are transcendental numbers or
not. The most notable example is the L-function attached to an elliptic
curve and the celebrated Birch and Swinnerton-Dyer conjecture. In a lec-
ture at the Stony Brook conference on number theory in the summer of
1969, Sarvadaman Chowla posed the following question. Does there exist
a rational-valued function f(n), periodic with prime p such that

converges and equals zero? In 1973, A. Baker, B. Birch and E. Wirsing
answered this question in the following theorem:

Theorem 92 If f is a non-zero function defined on the integers with alge-
braic values and period q such that f(n) = 0 whenever 1 < (n,q) < q and
the g-th cyclotomic polynomial is irreducible over Q(f(1),..., f(q)), then

Rl

In particular, if f is rational valued, the second condition holds trivially.
If ¢ is prime, then the first condition is vacuous. Thus, the theorem resolves
Chowla’s question. We shall present a proof of this theorem in the next
chapter. In 2001, Adhikari et al [2] noted that the theory of linear forms in
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logarithms can be used to show that in fact, the sum in the above theorem
is transcendental whenever it converges.

Let us first derive a necessary and sufficient condition for the sum in the
above theorem to converge. To this end, we use the Hurwitz zeta function.
Recall that for real x with 0 < x < 1, this function is defined as the series

1
C(s,x) := Z it

n=0

for R(s) > 1. Note that the series ((s,1) is the familiar Riemann zeta
function. Hurwitz proved that this function extends meromorphically to
the complex plane with a simple pole at s = 1 and residue 1. Moreover, we
have the following important fact:

1 I (z)

sl—i>r{l+ Ss:2) = s—1  TI(x)

This is easily seen as follows:

lim C(S,.’b) - C(S) =

s—1t

SN

[ 1 1
()
n=1
From the Hadamard factorization of 1/I'(z),

oo

g M)

n=1

we have by logarithmic differentiation,

T’ " 1 1
F(Z)PYJFZJF;(n—&-zn)'

Thus,
1"/
li - = —v— —(z).
Jlim ¢(s,2) = ¢(s) = =y = (2)
Observe that in the special case that x = 1, we deduce that

') = —.

Recall that by partial summation, we have

C(s) = s/loo m[ﬂld:z:.

The integral can be written as

5 = {z}
3—1_3/1 xs+1d$’
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so that

lim C(s)ll/loo{x}dz.

s1+ s—1 2

This last integral is easily evaluated as

lim {J;} dr =

N—oo Jq xT

n=2
Thus
1
1 — =1.
S—IHl+ C(S) s—1 v
Putting everything together, we obtain
Theorem 93 o)
1 I (x
li - == .
Jm ¢ 2) = 507 = T

Let f be any periodic arithmetic function with period ¢, that is
f:N—C such that f(n+q)=f(n) Vn.

Then for s € C with R(s) > 1, let L(s, f) be defined as
s
n=1 n

Now running over arithmetic progressions modulo ¢, we have the following
expression

q

L(s, /)= a7 Y fl@)(s,0fa),  R(s) > 1.

a=1

We can write this expression as

q —s

Lo, ) = 311 |elsvafa) = 2|+ 1§;f

a=1

This and partial summation yields the following theorem.

Theorem 94 Let f be any periodic arithmetic function with period q.

Then the series
Z f(n)
n=1
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converges if and only if

and in the case of convergence, the value of the series is

1 < r’
—gz:f(a)f(a/q)-

a=1

This gives us an interesting corollary even in the classical case:

Theorem 95 For a non-trivial character x mod q,

Lo =1 3wk

amod q

Let us now come back to the type of functions considered in the theorem
of Baker, Birch and Wirsing. We are now ready to analyse the series:

S S payc(s,ala).

n=1 a=1

is a necessary and sufficient condition for the convergence of the series at
s = 1. So let us assume that f satisfies the above. Then we have the
following expression:

Oofn
> I

We now try to derive an alternate expression for the above series as
we did for L(1, x) earlier. As before for any such periodic function f with
period ¢, let

. 1 < A
f(’fl) I f(m)ef%rzmn/q
-2

m=1

be its Fourier transform. By orthogonality, we have



129

Note that .
fl@)=0 as Y f(a)=
a=1

Carrying out the explicit evaluation for L(1, f) as done earlier for L(1, x),
we immediately have the following:

Theorem 96 Let f be any function defined on the integers and with period
q. Assume further that

Then,

Zf,(nn Zf F/a/q
1

1
n=1 q

q—1

Q

Fm) log(1 — e2mim/a).
m=1
Thus, in particular, if f takes algebraic values, the series is either zero or
transcendental.

Thus we see that when f takes algebraic values, then the above series is
a linear form in logarithms of algebraic numbers for which Baker’s theorem
applies. In particular, it is either zero or transcendental. The former case
is ruled out in the case when f is rational-valued and f(a) = 0 for ¢ >
(a,q) > 1. This is by the theorem of Baker, Birch and Wirsing which we
shall derive in the next chapter. However, this observation allows us to
deduce the following:

Theorem 97 Let ¢ > 1. At most one of the ¢(q) values

S/, (@o=1,

is algebraic.

Proof. If we choose two distinct residue classes a,b mod ¢, and set f(a) =
1, f(b) = —1 with f zero otherwise, then, f satisfies the conditions of
Theorem 96. Thus, the sum is either zero or transcendental. However, as
noted earlier, the former case is ruled out by the theorem of Baker, Birch
and Wirsing. Thus, it is transcendental. By the previous theorem, the sum
is equal to

S0/0) ~ T(afa)

In this way, we see that the difference of any two values in the set

!

T/, (a9 =1,
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is transcendental. Thus, if there were at least two algebraic numbers in this
set, we derive a contradiction. [

Presumably, all the numbers in the set are transcendental. However, one
is unable to establish this at present. Using Theorem 95, we can “solve” for
I'(a/q)/T(a/q) using the orthogonality relations for Dirichlet characters.
To this end, we must first evaluate the sum

So= Y Tlafa)
(a,q9)=1
We use the identity
D(2)0(z+1/q)---T(z + (¢ = 1)/q) = ¢"/*7%(2m) V20 (g2).
Logarithmically differentiating this, and setting z = 1/q, we get

D

a=1

(a/q) = —qlogq —vq,

glle

where we have used the fact IV(1) = —v. Thus,
> Sqa = —qlogq — g,
dlq
and we may apply Mobius inversion to solve for Sy:
q q q q
=—) ud ( log = +7d) = —76(q) = _p(d) 5 log .
d|q dlq
We are now ready to prove:

Theorem 98 For (a,q) = 1, we have

_‘fé‘l)rl (afa) = 22+ 3 x(

XF#Xo0
Proof. This is immediate from the orthogonality relations and our evalu-

ation of S;. O

The interesting aspect of this formula is that it can re-written as follows:

!

r pu(d q q _
—5(a/q) = 7+—Z 0g - @X;;OX(G)L(LX)

Apart from the v on the right hand side, we have a linear form in logarithms
with algebraic coefficients and thus, we immediately deduce:
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Theorem 99 For all ¢ > 1 and (a,q) =1, the number
!

T/ +v

1s transcendental.

Proof. Baker’s theorem tells us that it is either zero or transcendental.
The former is not possible since IV () /T'(z) is a strictly increasing function
for x > 0 (see Exercise 5 below). O

Exercises

1. Prove that

(—1)k-1 k-1

C(k,a/q) + (-1)*¢(k,1 - a/q) = R

(meotmz)|—a/q-

2. Show that ddjc%(w cot m2) is ¥ times a rational linear combination

of expressions of the cot” mz csc®® 7z where r + 25 = k.

3. Conclude from the previous exercises that

C(kya/q) + (—=1)*¢(k,1 —a/q) = i*m*a,
where ¢, is an element in the gth cyclotomic field Q(¢g).

4. Show that for an odd integer k > 1, {(k,1/4) and ((k, 3/4) are linearly
independent over Q if and only if ¢(k)/7x* is irrational.

5. Show that I(z)/T'(x) is a strictly increasing function for x > 0.
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Chapter 23

The Baker-Birch-Wirsing
theorem

We now give a detailed proof of the theorem of Baker, Birch and Wirs-
ing introduced in the previous chapter. We present a somewhat modified
version of their original proof by exploiting the properties of Dedekind de-
terminants. These determinants have remarkable applications in a number
of contexts in transcendence theory.

Theorem 100 Let G be any finite abelian group of order n and F : G — C
be any complex valued function on G. The determinant of the n x n matriz
given by (F(ly’l)) as x,y range over the group elements is called the
Dedekind determinant of F' and is equal to

10 (zx<x>F<m>> ,

X zeG

where the product is over all characters x of G.

Proof. Let V be the set of all functions from G to C. This is an n-
dimensional Hilbert space over C with an inner product

<gh>= 3 gla)h(e).

z€G

Let G be the set of all characters of G. These form an orthonormal basis
for V. Now consider the linear map T : V' — V whose values on a character
X is given by
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Clearly, the characters of G are eigenvectors of T" and determinant of T is

equal to
(3]

xe@ z€G

Now for every = € G, let d, be the characteristic function of the set {z}.
Then the set of all §, as x runs through elements of G also forms an
orthogonal basis for V. We note that < §,, x >= % x(z71) for any character

x of G and hence
1
0y = — “Dy.
- > x(@h)x

xXE€EG
‘We have

) = 3 xEHT)

x€q@

= %Zx(w’l) > xW)F)| x

xe@ yeaG

= % DD xaty)Fly)x

Xe@ yeG

D DD IR LA TN

€@ z€G

= Y RGeS x = Y Pl

2€G ve@ 2€@

Thus the matrix (F(ocy_l))T e is simply the matrix of 7" with respect to
the basis {d, : © € G }. This proves the theorem. [J

Let us now prove the Baker-Birch-Wirsing theorem. We are given a non-
zero periodic arithmetic function f with period q. Further, f takes algebraic
values and f(n) = 0 whenever 1 < (n,q) < ¢. Finally, we are given that the
g-th cyclotomic polynomial is irreducible over Q(f(1), ..., f(q)). We need

to show that -
n=1 n

Recall that the digamma function ¥(z) for z # —n with n € N is the
I'(z)
I'(2)

V=T ()

n>1

logarithmic derivative of the I'-function and is given by
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As shown in the previous chapter, the series converges if and only if

and in which case, we note that

Z f(n Z f a/q f(QW(l)_

(a,q)=1

Since (1) = —y and >_¢_, f(a) = 0, we have

Y fla)

(a,q)=1

so that 4
L(L, f) = " S fla)(@(a/q) +7).
(a,q)=1
Also

—1

~

L1, f) = - (a) log(1 = ¢7),

1

where f is the Fourier transform of f and C, = €™/1, Let F be the field
Q(f(1), .., f(g)) and

log(1 —¢*), - -+, log(1 — (")

be a maximal F-linear independent subset of

_

?
I

{log(1—¢3) |1 <a < g—1}
Then .
log(1—¢§) =Y Agplog(l —¢5*),

b=1
where Ay, € F. Then by the given hypothesis, we have
ﬁllog(l —C:;I) -l—-l—ﬁtlog(l —C;“) =0
where

Bb = (a)Aab .

a=1

Since f takes values in F, f is algebraic valued. Thus by the Baker’s
theorem on linear forms in logarithms, we have

B=> fla)Awp =0, 1<b<t.
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Then for any automorphism o € Gal(F(¢,)/F'), we have

<

-1
o(fla)Aep =0, 1<b<t,
1

a

and hence

_

—1

o(Fla) log(1 — ¢§) = 0.

a=1

Let G be the Galois group of the extension F((,)/F. We note that G is
isomorphic to the group (Z/qZ)*. For (h,q) = 1, let 0}, € G be such that

Uh(Cq) = Q?
Define fj,(n) := f(nh=!) for (h,q) = 1. Then, we have

~

> fula) = —fulg) = —f(g) and 05(F(n)) = fu(n).

(a,q)=1

Hence

L(]-?fh) = Z

n=1

Z a)log(l—¢y)

:—Zah a))log(l—¢7) =0
for all (h,q) = 1. This gives that

L(1, fn) = }: fr(a)(¥(a/q) +v) = 0.

(a,9)=1
Hence by making a change of variable, we have
> fla)(y(ah/q) +7) =0, (23.1)
(a,q)=1

where it is implied that ah is taken to be the reduced residue class b (mod q)
satisfying
ah =b (mod q).

Now
A= (P(ah/q) + ) (an.g)=1

is a Dedekind matrix on the group H = (Z/¢Z)* and its determinant (up
to a sign) is given by

11 (ZX $(h/q) +7)>

xefi \heH
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If we show that the matrix A is invertible, then f vanishes everywhere and
we are done. For a non-principal character y of H,

> x(h) (¥(h/q) +7) = —a L(1,x).

heH

Tt is classical that L(1,x) # 0 for x # 1. Thus we need only to verify that

> (W(h/g) +7) #0. (23.2)

heH

Since ¢ (x) is an increasing function (see Exercise 4 below) and (1) = —v,
we have the above identity. This completes the proof of the theorem.

In a recent work [57], a generalization of the above theorem has been
derived.

Exercises

1. Let g be an odd prime. Using the fact that the numbers

na::m, l<a<q/2
sinm/q

are multiplicatively independent units in the cyclotomic field, Q(eQ’”/ 7),
show that the numbers

log ng, l<a<q/2
are linearly independent over the field of algebraic numbers.

2. Apply the previous exercise to show that if f is a rational valued even
periodic function with a prime period ¢, then

S

3. If f as an odd rational-valued function periodic function with a prime
period ¢, then show that

1)

n

WK

3
Il
-

In fact, when the sum converges, show that it is an algebraic multiple
of 7.

4. Show that v (z) is an increasing function of x for x > 0.
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Chapter 24

Transcendence of some
infinite series

In this chapter, we investigate the transcendental nature of the sum

> b

ne”Z

~

where A(z), B(x) are polynomials with algebraic coefficients with deg A <
deg B and the sum is over integers n which are not zeros of B(x). We relate
this question to the celebrated conjectures of Gel’fond and Schneider. In
certain cases, these conjectures are known, and this allows one to obtain
some unconditional results of a general nature.

Let A(x) and B(x) be polynomials in Q[z] with deg A < deg B so that
that B(z) has no integral zeros. We will evaluate the infinite series

A(n)
— 24.1
€z
interpreted as
: A(n)
N2 B
[n|<N

We seek to determine under what conditions the sum is a transcendental
number. One could also allow B(z) to have integral zeros and exclude
these integral zeros from the sum (24.1). The methods described in this
chapter apply to this general setting also. We will relate these questions
to a celebrated conjecture of Gel’fond and Schneider. We will follow the
treatment given by M. R. Murty and C. Weatherby in [88].

In 1934, A. O. Gelfond [41] and Th. Schneider [108] independently
solved Hilbert’s seventh problem which predicted the following result which
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we have already seen before: if « is an algebraic number # 0,1 and j
is an irrational algebraic number, then o is transcendental. This result
has some interesting consequences. For example, by taking o = —1 and
B8 = —i = —y/—1, we deduce the transcendence of e™. Similarly, one can
deduce the transcendence of e™ for any real algebraic number . Based
on their investigations, Gel’fond and Schneider were led to formulate some
general conjectures that provided a concrete goal for researchers in subse-
quent decades. Let us begin with the following conjecture of Schneider:

If a # 0,1 is algebraic and B is an algebraic irrational of degree d > 2,
then

d—1
al . af

are algebraically independent.

In 1949, Gel'fond [42] proved that if d > 3, then the transcendence
degree of

Q(a”, ..., aﬂdil)
is at least 2. Thus, in the case d = 3, this proves Schneider’s conjecture.
Building on earlier work of G. Chudnovsky [30] and P. Philippon [97], F.
Diaz [38] showed that
- d+1
tr.deg.@(aﬁ,...,aﬁd 1) > {;—] )

Thus, we have crossed the “midway” point in our journey towards Schnei-
der’s conjecture.

Shortly after their solution to Hilbert’s seventh problem, Gel’fond and
Schneider were led to formulate a more general conjecture:

If a is algebraic and unequal to 0,1, and B is algebraic of degree d > 2,
then .
loga,a?, ..., "

are algebraically independent.

We refer to this assertion as the Gel’fond-Schneider conjecture. We
point out that, as will be seen, for our purposes « is a root of unity and we
use these conjectures only in a special case.

In the study of the transcendence properties of the series (24.1), the case
where the roots of B(x) are rational and non-integral is easy. As will be
evident from the discussion below, the sum in this case is equal to 7wP(7),
where P(z) € Q[x]. Thus, if all the roots are rational and non-integral, the
sum (24.1) is either zero or transcendental. We seck to establish a similar
theorem in the general case when B(x) has irrational roots.

One of the main theorem of this chapter is the following:
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Theorem 101 Let A(x), B(z) € Q[z] with deg A < deg B, A(z) coprime
to B(z), and A(x) not identically zero. Suppose that the roots of B(x) are
—riye., =1 € Q\Z and —aq,...,—ay ¢ Q so that all roots are simple
and oy £ a; ¢ Q fori#j. If k =0 then the series

S = Z
nEZ

is an algebraic multiple of m. If k > 1, then Schneider’s conjecture implies
that S/m is transcendental and the Gel’fond-Schneider conjecture implies
that S is algebraically independent from .

Proof. We begin the proof with the following two observations. The first
is that

1
WCOtW:U:Z et
n+x

nez
which is valid for z ¢ Z. Now,
‘eiﬂ'(E + e*iﬂ'w ‘e2ﬂ'im +1 ‘ 2
cotmr = 1—— — =l =1+ 5—0,
e’L‘ITﬂL_e—ZTFﬂC e 71'292_1 e 71'131)_1

and this will be useful below. The second is that by the theory of partial
fractions, we can write
k

Alz) Lod ¢
B(x)_ZaH— +Zx+ozj'

T
m=1 moog=1

By direct calculation, our series divided by 7 is equal to
k 2ﬂ2a7 +1 l 27rzrm +1
t z;c e?‘n’za] —1 Z m627mrm -1 ?
J:
where each ¢; and d,, is in Q) {0}. If all of the roots are rational, the first
sum is empty and S/7 is algebraic which proves the first assertion.

Assume that B(x) has at least one irrational root and suppose the sum,
S/m € Q. We have

27rzr 2ma
m 41 j + 1
S/W_sz 627Tzrm -1 = ZZ J627T2(J/J _
k k

= izcj+2i2ﬁ

j=1 j=1

so that

k 27r17
Cj . 1 m 41
;6277101-_1_271' S/W_szm 27717“17,_ ZZC] —96@
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By assumption, [Q(az,...,ax) : Q] = d > 1. Now by the theorem of the
primitive element, there is a 8 € Q of degree d such that Q(ay,...,ax) =
Q(B). Thus, we have the equations

d—1
J— a
aj = ra;B
a=0

where each r, ; € Q. Let us chose an integer M € Z such that

1 d—1
O[] = M Zna’jﬁa
a=0

where each n, ; € Z. Let a = ¢™/M . If Schneider’s conjecture is true then
the numbers

Ckﬂ a5d71

goe ey

are algebraically independent, which implies that

d—1
0425 042’8

geeey

are also algebraically independent. Define z, := o?8" = €27#8"/M for q =
1,...,d —1 so that

MNd—1,;

oria; _ 2miydTly ge g
e I =eM a=0 ""a,J _’ijl ...:Cdfl

where 7; = €2™0.3/M s a root of unity.

Making this substitution we have

¢j
j

k
=" T

e L
j 1’ij1 Ty

This implies that all of the x;’s cancel in some fashion leaving only an
algebraic number. We will now show that this does not occur under the
conditions of our theorem.

Let us examine the function

¢

X ni,j . Nd—1,5 _ 1"
7 X1 X5 1

F(Xy,...,Xa1) =)

Jj=1

k

If we can show that F' is not constant, then our sum actually contains some
variables and we are done. We show that F' is not constant by examining
F' at some special points. Let y be a new indeterminate. For some integral
values eq,...,eq_1 to be specified later, let X; = y*. We have that

k

F(y®, ... ,y% 1) = Z

j=1

¢
Yy —1
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where o; = (n1,...,n4-1,;) and € = (e1,...,e4—1). For any n; - < 0, we
have
1L, 1
WyE—1 vy -1
so that
e1 €d—1 . Sgn(ﬁj'é)
F(y®, ... y% 1) = — Z ¢+ Z ¢ gt 2) —— (24.2)
;<0 j=1 ymaiel =1

where sgn(z) = 1 if # > 0 and -1 otherwise. If every power of y that
appears in the second sum is different and nonzero, then we can group each
summand over a common denominator and notice that the degree of the
numerator will be less than the degree of the denominator. It is easy to
see that, if the function above in (24.2) (as a function of y) is constant
then each ¢; = 0, which is a contradiction. Hence, if we can guarantee the
condition that each |77 - €| is different and nonzero, then our function is not
constant, and therefore the transcendental part of our original series does
not vanish and we are done.

We now specify . We wish to choose integers e; such that 7;-€ # £nj7-€
for j # j'. We also need each m; - € # 0 as well. Thus, we need € which
simultaneously satisfies

(7 £ 7077) & #0
nj-e#0.

To find such an €, we use a lattice point argument. For positive integer
D, let Ip = (0, D]. Examine the box Bp = Iy * which contains a total of
D71 lattice points. We wish to avoid points which satisfy the equations

(M7 £77) €=0

nj-e=0.

Our conditions on the irrational roots ensure that m; +£7;7 # 0 so that none
of these equations is trivially satisfied. There are at most D% 2 lattice

points in Bp which satisfy each equation. We have 2 equations of

k
2
the first form, and k& equations of the second type, thus, for D large enough,

we have at least
d—1 k d—2
D - <k + 2 ( 9 >) D > 1

lattice points to choose from for €. Thus, there exists such an € which
shows that our function F' is not constant. This shows that 6, and therefore
S/m, is transcendental and we have the second assertion of our theorem. To
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show the third assertion, we observe that the Gel’fond-Schneider conjecture
predicts that the d numbers

log(a),a”, ..., o

are algebraically independent. In our setting, this conjecture implies that
m and x1,...,xq_1 are algebraically independent which completes the argu-
ment. [

The condition that B(z) has only non-integral roots is not a serious
constraint. In fact, it can easily be removed in some cases if we understand
that we are considering sums

1 A(n
Aln) (24.3)
(n)
neL

where the dash on the sum means that we sum over only those integers n
which are not roots of B(x). More precisely, we now indicate how Theorem
101 is valid (partially) if we remove the restriction that B(x) has no integral
roots and we interpret the sum (24.3) as omitting the integral zeros of B(z).
Indeed, suppose that —nq, ..., —n; are all the integral roots of B(x). After
expanding A(x)/B(z) in partial fractions, we encounter three types of sums:

/ 1 / 1 / 1
. 24.4
Zn—l—ni’ Zn—i—m and nze:Zn-l-Oli (24.4)

nez nez

Clearly, in relation to transcendence, the first sum above has no effect.
The second and third sums of (24.4) are

t t

1 1
mTeotr; — and mwcotmoy — .
g an+7«i g an+04i

Jj=1 J=1

Since the second sum for each is algebraic, it is clear that when B(x) has
at least one integral zero we will obtain a similar conclusion to the last
part of Theorem 101 where there are no integral zeroes. More precisely,
in the same setting of Theorem 101 with k¥ > 1, allowing B(x) to possibly
have integral roots, the Gel’fond-Schneider conjecture implies that the sum
(24.3) and 7 are algebraically independent.

Since the Gel’fond-Schneider conjecture is still far away from being es-
tablished, and we are somewhat “nearer” to the Schneider conjecture, it
is reasonable to ask what can be said about the number S in the previous
theorem assuming this weaker conjecture. Here one has the following.

Theorem 102 Fiz nonconstant polynomials Ay(x), A2(x), Bi(x), B2(x) €
Q[z] so that A;(x) has no common factors with B;(x), deg(A;) < deg(B;)
and the functions Ay (x)/B1(x), Az(x)/Ba(x) are not scalar multiples. Write
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B(z) = lem(B1(z), Ba(x)) and suppose that B(z) has only simple irrational
roots —ou, ..., —oy, such that a; £ o ¢ Q for i # j. If Schneider’s conjec-
ture is true, then the quotient

n As(n
(=56 (Z50)

Proof. We first work with the case that B (z) and Bs(x) are scalar multi-
ples. Without loss of generality, we can assume that By (x) = Ba(x) = B(z).
By partial fractions we write

s transcendental.

k
z:: T+ o

and

k
Zx—kaj

=1

.

for some ¢;, C; € Q. As in the proof of Theorem 101 , we have

Ai(n) Az(n)
. Bln) mi(f1 + 201), . Bln) mi(Ba + 262)
where
k k k e k C.
_ ) _ ) _ J _ J
ﬂl*;c‘?7 527‘7‘:2161‘77 017‘7‘:21627”;043'—1’ 0272627”:0‘]'_17.

Theorem 101 implies that 6, and 6 are transcendental. If the ratio of the
two series is algebraic then

Ai(n) | Asln) _

< B Bl

for some algebraic A # 0. Thus
2(01 — Mb2) = A3y — B4

We now focus on
k

_ N G A
br—202=) G T
Jj=1
Similar to the proof of Theorem 101, we see that 6; — A0, is algebraic only
if ¢; — AC; = 0 for each j. This implies that A;(z) = AAs(x) which gives
a contradiction.
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Next we assume that B;(x) # aBs(x) for any algebraic number a. That
is, without loss of generality, By(z) has a root R such that Bj(R) # 0.
Suppose that the quotient

Al(n) Ag(’l’l)
(Z Bm) / (Z Bz<n>>

nez

is algebraic. Inserting the appropriate missing factors to each numerator,
respectively, we have that the quotient

Ai(n) / As(n)
ez B )\l B

is algebraic. We see that we are in a situation close to the previous case.
We remark that in the previous case, A;(z) need not be coprime with
Bi(z) = B(z). If there were common factors, some of the (say) ¢;’s would
simply be zero and we would still obtain the same contradiction. With this
in mind, if the quotient of series is algebraic then according to the previous
case, there is a nonzero A € Q such that

Ai(z) | Ay(x)
Blx) ~ B)

which simplifies to

Ay (z) _ )\AQ({E)
Bl ([E) Bg(l‘) '

Since R is a pole of the right side but not the left, we have a contradiction
and we are done. [J

A simple corollary of Theorem 102 is that by assuming Schneider’s con-
jecture, along with our condition on the irrational roots of B(z), one can
establish the transcendence of S with “at most one exception.”

Both the Schneider conjecture and the Gel’fond-Schneider conjecture are
special cases of the far-reaching Schanuel conjecture. As discussed earlier,
this conjecture predicts that if the complex numbers z1, ..., x,, are linearly
independent over Q, then

tr.deg. Q(z1, ..., Tp, €*1, ..., €7") > n.

An interesting consequence of this conjecture is that 7 and e are alge-
braically independent. If xq,...,x, are algebraic numbers, the assertion of
the Schanuel conjecture is the celebrated Lindemann-Weierstrass theorem.
Beyond this, the general conjecture seems unreachable at present. However,
as mentioned in the introduction, progress has been made on the Schneider
conjecture and this allows one to make a some of these results uncondi-
tional. To standardize the setting throughout, let K1 = Q(ay, ..., ax), the
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field generated by the roots of B(z), and let K5 be K7 adjoin the coeffi-
cients of A(z) and B(x). Restricting ourselves to the case where B(z) has
simple roots, the following are unconditional versions of Theorems 101 and
102 respectively.

Theorem 103 In the same setting as Theorem 101, if [K1 : Q] = 2 or 3,
then S/ is transcendental. If K is an imaginary quadratic field, then S
1s algebraically independent from .

Theorem 104 In the same setting as Theorem 102, if [K1 : Q] = 2 or 3,

then the quotient
Al (n) AQ(TL)
(Z Bl<n>> / (Z Bz(”))

neEZ

1s transcendental.

Here is the proof of the above theorems. Since Schneider’s conjecture is
true for d = 2,3 (Gel’fond), we immediately have Theorem 104 and the first
part of Theorem 103. To prove the second part of Theorem 103, we invoke
the theorem of Nesterenko [93] discussed before, namely, if Q(v/—D) is an

imaginary quadratic field with D > 0, then 7 and e™D are algebraically
independent. Thus, S is algebraically independent from 7.

In the above theorems, we restricted ourselves to the case of simple
roots. We can also derive results in the case of multiple roots. For this,
we shall need the following lemma regarding derivatives of the cotangent
function.

Lemma 105 Fork > 2 and x ¢ Z,

drkt Nk Apa Ap
) (7 cot(ma)) = (2mi) (627”.73 — +-- 4+ (cZriz — 1)k
where each A; ; € Z with Ap1, Agr # 0.

Proof. We have that
7 eot(mx) = i + 2mi /(¥ —1).

Differentiating this we obtain the result for £k = 2. Assuming that the equal-
ity is true for all k£ < ¢. then by induction we have A;_11,...,Ai—14-1 €Z
with Atflyl, Atfl’tfl 75 0 such that

d [ d—2 d A Ar1 -
e (dxt_g (m COt(”»””))) = (27”)75_1% (ezﬂtim 1;11 Tt (6277:@: itl)lt—1>
which equals

t 627rm eQTri;z
(27i) (—Atmw — = (t=1DA1 1 W) )
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By subtracting and adding 1 from each numerator we have

2mix 2mix
Nt e —1+4+1 e —1+1
(27i) (—z‘hmw - = (t- 1)At71,t71m
which equals (27i)! times
Ay Ay (t—DA1-1 C—1Ar14
e2mir _ (eQTriw _ 1)2 (627ri:z: _ ]_)tfl (627”,':6 _ 1)15

and this gives the result. [J

Since

1 . 21
E = meot(mx) =i + 5——,
n+ax e2miz _ 1
nez

a consequence of Lemma 105 is that for each k& > 2,

Z 1 (—1)k1(2ﬂ'i)k< A Ap i
(

- , oy TRE ) (945
n+ 1’)k (k _ 1)[ e2miz _ ] + + (e2ﬂ'zw _ 1)k> ( )

nez

for Ay ;’s as above.
We are now ready to consider the case of multiple roots. Let us start
with the following theorem.

Theorem 106 If the Gel’fond-Schneider conjecture is true, then for any
A(x), B(z) € Q[z], with deg(A) < deg(B) and B(n) # 0 for any n € Z,

the series
nez

A(n)
B(n)
is etther zero or transcendental.

Before we start the proof of the above theorem, it is useful to remark
that if B(x) has only rational (and not integral) roots, then it is not hard
to see from the previous lemma that the value of (24.1) is a polynomial in 7
with algebraic coefficients and zero constant term. Thus, again the sum is
either zero or transcendental. So we can focus on the case of irrational roots.
Indeed, if we also allow —nq,...,—n; to be integral roots and understand
the sum over Z excludes these integral roots, we are led to study, as before,
sums of three types:

!

/ 1 1 / 1
D —_— D 4.
P DR A P P TR

nez

The third sum is

(“D* e ~ 1
CES TRl M DY ey

T= =1
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and the last sum is algebraic. A similar comment applies for the middle
sum, which turns out to be an algebraic multiple of 7% plus a rational
number. Finally, the first sum is easily seen to be a rational multiple of
7% plus a rational number. Thus, in the case that there are integral roots
and we sum over those n € Z which exclude those roots, we are able to
assert the stronger theorem that the series is either given explicitly as an
algebraic number, seen as the sum of the remainder terms Z;Zl above, or is
transcendental under the assumption of the Gel’fond-Schneider conjecture.

We can now proceed to prove Theorem 106. Let —ay, ..., —ay € Q\ Z
be the roots of B(z) with multiplicities my, ..., my respectively. By partial
fractions we write v

Al) gy
Blr) ~ 242 (atay)
By Lemma 105 we have that ) _, A(n)/B(n) is equal to
27rw¢J +1
W%ZCJJ - + (24.7)

k. my
Z Z Cj l (277'6) Al)l 4ot Al,l
l _ 1 e2mia; _ | (62m'aj _ 1)l :

Viewing this as a polynomial in 7 (with zero constant term), we analyze
the coefficients. By the primitive element theorem, there is an algebraic 3
of degree d such that Q(8) = Q(ay,...,ax). Thus, as before, we can write

each
=
=7 2 "B
a=0

for some integers M, n, ; so that
27r1a] H 6271'1,71@][3 /M

Let a = e™/M 5o that we have that each coefficient of a given power of

7 in equation (24.7) lies in the field Q(a”, ... ,aﬁdil). Since the Gel’fond-
Schneider conjecture implies that 7,a?,...,a8%" " are algebraically inde-
pendent, we conclude that the sum is either zero or transcendental. This
completes the proof of Theorem 106.

One also has the following theorem in this context.

Theorem 107 Let A(z), B(z) € Q[z] with deg(A) < deg(B), and A(x)
coprime to B(x). Suppose that the roots of B(x) are —r1,...,—1 € Q\ Z
and —a, ..., —oay ¢ Q with k > 1. Let N be the mazimum order of all the
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irrational roots and suppose that for distinct o, o5 of order N, a; £oj ¢ Q.
If the Gel’fond-Schneider conjecture is true then the series

n

B(n)
nez

and 7 are algebraically independent.

Proof. The case that N = 1 is dealt with in Theorem 101, so assume
that N > 1. Let vy,...,v; and mq,...,m; be the orders of the roots
respectively. By partial fractions we have

3

J

k t
A(x) il
(z) Z a:JrJa Z+Z x+rs

j=11=1 s=1u=1

for some algebraic numbers c;, ds,,. By Lemma 105 the series

> A(n)/B(n)

nez

equals
27rch +1
Tmzcj 1627TzaJ _ +

k. my
Yoyl et Aw L Au
l _ 1 e2miay _ 1 (627rz'o¢j _ 1)l

j=11=2

+7m Z J 2‘/1'17‘5 + 1 +

sl omir. 1 e2mirs _

: “ s u (271—71) Au,l Au,u
E E 5 +o At
— = u_l e2mirs 1 (6 LT s _1)u

We view this sum as a polynomial in 7. We examine the coefficient of 7
Note that the rational roots contribute algebraic numbers to this coefficient
so we ignore them for now. We focus on the transcendental portion of this
coefficient which comes from the irrational roots part of the above sum.

That is, ignoring the common factor of (12:,711()2,1) we examine
AN An N
Z G.N <e2m‘aj 1Tt (e2mioy — )N )
ord(a;)=N

We proceed similar to the proof of Theorem 101 and let

M,ﬁ,d,nmj,a,’yj,xa,Xa,y
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and € be as described there. By showing that there is an € so that the
function

AN An N
Fly) = c‘,N<v7+"'+v’
( ) ord(ag_]\[ ! ’ijnﬂ'e —1 ('ijni'e _ 1)N

ord(a;)=N : <’yjynj.e - 1)N

is not constant, we show that the original coefficient of 7 is transcenden-
tal. By the remarks made above equation (24.2), we can assume that each
7, - € is positive (or else we could remove an algebraic number as we see in
equation (24.2)). Note that we can choose € such that each 7; - € is distinct
and nonzero. Thus, after placing everything over a common denominator,
we have a function in y whose numerator has smaller degree than the de-
nominator. If this function is constant (and therefore equal to zero), it is
easy to see that this implies that each c; y is zero which is a contradiction.
Thus the coefficient of 7% is transcendental. Write

= Aln)
=2 B

where each C; € Q(a?,.. .,o/jd*l) and Oy ¢ Q. Similar to before, the
Gel’fond-Schneider conjecture implies algebraic independence of 7 and the
coeflicients, C, thus S is transcendental and in fact algebraically indepen-
dent with 7. [

=CntN -+ O

In the case of multiple roots, these methods allow one to obtain the
following theorem. It can be viewed as a natural generalization of Euler’s
famous theorem that ((2k) € 72*Q, where ((s) is the Riemann zeta func-
tion. As before, let K1 = Q(ay, ..., ax), the field generated by the roots of
B(z), and Ks be K; adjoin the coefficients of A(z) and B(x).

Theorem 108 Let A(x), B(x) be polynomials with algebraic coefficients,
deg A < deg B, and A(x) is co prime to B(x). Let Ky be either an imagi-
nary quadratic field or Q. If B(x) has no integral Toots, then

7 A(n)

nez B(n)
is either zero or transcendental. If B(x) has at least one integral root then
the sum is either in Ko or transcendental. If B(x) has at least one irrational
root and all irrational roots satisfy the conditions of Theorem 101 that o; +
a; ¢ Q for i # j, then the sum is transcendental.

Proof. Suppose first that K, = Q and that B(z) has no integral roots. Us-
ing (24.5), the sum of the series is wP(7) for some polynomial P(z) € Q[z].
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If P(x) is identically zero, the sum is zero. If P(x) is not identically zero,
then, the sum is a non-constant polynomial in 7 and hence transcenden-
tal. Suppose now that Kj is an imaginary quadratic field Q(v/—D) with
D > 0 and B(z) has no integral roots. Again using (24.5) and the identity

L p2mix .
Y onez (n«lm) =i z%mi, our sum is of the form

7TR(7T, eﬂ'\/ﬁ/]\/[)

where R(x,y) is a rational function with algebraic coefficients which is
polynomial in z and M is the same as was defined in the proof of Theorem
101. If R(x,y) is identically zero, the sum is zero. If it is not identically
zero, by Nesterenko’s theorem, it is transcendental since m and e™VD are
algebraically independent. This completes the first part of the proof.

To treat the case that B(z) may have integer roots, we argue as in the
earlier theorems. In this context, we inject the observation made earlier
with the three sums (24.6) from which it was deduced that the sum in
question is of the form

wP(m) + nR(m, e”\@/M) + algebraic number,

where the algebraic number lies in the field K5 being essentially a finite
sum of terms of the form
Cjil ds,u €p,q
(ne+a;)!" (ne 47" (ne —mnp)e

where n; is an integral root, «; is an irrational root, 7, is a rational root,
n, is an integral root not equal to ny, and c;, ds.«, €p,q are the coeflicients
arising from the partial fractions decomposition of A(z)/B(z). It is clear
that the algebraic number is an element of Ky. Thus, if P(z)+ R(z,y) =0,
then the sum is in Ks, otherwise the sum is transcendental by the earlier
argument using Nesterenko’s Theorem.

Finally, if the irrational roots of B(z) satisfy the conditions of Theorem
101, then R(x,y) depends on the variable y in which case we can conclude
the sum is transcendental. [J

There are easily identifiable situations when one can say definitively
that the sum is transcendental. For example, as in Theorem 108, if the
irrational roots of B(x) satisfy the conditions of Theorem 101 and generate
an imaginary quadratic field, then the sum is transcendental. But there
are other cases when the conditions of Theorem 101 may not be satisfied
and still, one can check directly that the sum is transcendental. (See for
example, Exercise 2 below.)

Another illustration is given by a problem investigated by Bundschuh.
In 1979, P. Bundschuh [23] studied the series

> nkl_ - (24.8)

[n|=2
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and showed using Schanuel’s conjecture that all of these sums are transcen-
dental numbers for £ > 3. An examination of his proof shows that the
“weaker” Gel’fond-Schneider conjecture is sufficient to deduce his result.
The methods described in this chapter allows one to deduce uncondition-
ally, that the sum (24.8) is transcendental for k = 3,4 and 6.

Exercises

1. Show that
n2—n—1
nez

2. Prove that

Z 1 ot 6277\/5/A -1
= An?+ Bn+C VD \ e27VD/A _ 2(cos(rB/A))emVD/A 4 1

is transcendental if A, B,C € Z and —D = B? — 4AC < 0. Deduce
that the value of the sum is a transcendental number.

3. From the previous exercise, deduce by taking appropriate limits that

¢(2) = n?/6.

4. In the penultimate exercise, deduce a formula for

1
7;2 (An? 4+ Bn + C)*

by treating the sum as a function of a continuous variable C' and
differentiating the right hand side with respect to C.

5. Show that at least one of

— 1 1
is transcendental.

6. Show that for k = 2, the sum (24.8) is a telescoping sum equal to 3/2.

7. Show that for k = 4, the sum (24.8) is equal to

7
1 gcoth T,

and that it is transcendental.
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Chapter 25

Linear independence of
values of Dirichlet
L-functions

We have seen before that for any non-trivial Dirichlet character x mod g,
L(1,x) is transcendental. In this chapter, we study the possible Q-linear
relations between these values of L(1,x) as x ranges over all non-trivial
Dirichlet characters mod ¢ with ¢ > 2. More precisely, we will prove the
following:

Theorem 109 The Q-vector space generated by the values L(1,%) as X
ranges over the mon-trivial Dirichlet characters (mod q) has dimension

v(q)/2.

We note that the analogous question for the dimension of the Q-vector
space generated by these special values is not yet resolved except in certain
special cases. For instance when ¢ is a prime power, we know that the
dimension of the Q-vector space generated by these L-values is ¢(q) — 1.

An important ingredient in the proof of the above theorem is the prop-
erties of a set of real multiplicatively independent units in the cyclotomic
field discovered by K. Ramachandra (see Theorem 8.3 on page 147 of [130]
as well as [100]). We shall give the details along the course of the proof.

We begin with a straightforward result from group theory which is an
interesting variant of Artin’s theorem on the linear independence of the
irreducible characters of a finite group G. As usual, we can define an inner
product on the space C(G) of complex-valued functions on G. Indeed, if
f,9 € C(G), then

1 -
(F.9) = g 3 F(@)o o).

zeG
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Lemma 110 Let G be a finite group. Suppose that
> xlghuy =
x#1

for all g # 1 and all irreducible characters x # 1 of G. Then uy, = 0 for
all x # 1.

Proof. For any irreducible character ¢ # 1, we can multiply our equation
by ¥(g)/|G| and sum over g # 1 to obtain

_ PMx(M)
0= G ST X ;ux(u,w) exl

Thus, by the orthogonality relations,

1
0=1uy — Z uy X (1 MS (say).
o 2 C]
Hence, for every g # 1, we have
- o7 20

x#1

Recalling that

ﬁ > x(g9)x(1) =

unless g = 1, we deduce that S = 0. Hence u, = 0 for all x # 1 as desired.
O

Let us record the following version of Baker’s theorem which is amenable
for our applications.

Lemma 111 If ay,...,a, € Q\{0} and B4, ..., 3, € Q, then
prlogay + -+ + Bplogay,

is either zero or transcendental. The latter case arises if logaq, ..., log au,
are linearly independent over Q and 1, ..., B, are not all zero.

As before, for all purposes we interpret log as the principal value of the
logarithm with the argument lying in the interval (—, 7.

In particular, if log aq, ..., log i, are linearly independent over Q, then
they are linearly independent over Q.

As an application of the above lemma, we first prove the following:
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Lemma 112 Let oy, as, ..., a, be positive algebraic numbers. If co,cq, ..., Cp
are algebraic numbers with co # 0, then

n
com + Z c;jlog oy

=1
1s a transcendental number and hence non-zero.

Proof. Let S be such that {loga; : j € S} be a maximal Q-linearly
independent subset of
log ay, ..., log au,.

We write m = —ilog(—1). We can re-write our linear form as

—icglog(—1) + Z d;logaj,
JjeSs

for algebraic numbers d;. By Baker’s theorem, this is either zero or tran-
scendental. The former case cannot arise if we show that

log(—-1), logaj;, j€S
are linearly independent over @Q. But this is indeed the case since

bo log(—1) + Z bjloga; =0
JjES

for integers bg, b;,j € S implies that by is necessarily zero. This is because
the sum ), gbjloga; is a real number since each a; is a positive real
number. But then b; = 0 for all j. This completes the proof. [

One of the crucial ingredients for the proof of our theorem is the follow-
ing:

Theorem 113 Let f. be an even algebraic valued periodic function defined
over integer with period q. Suppose it is supported at co-prime classes
(mod q) with Y1 _, fe(a) = 0. Then L(1, f¢) # 0 unless f. is identically
zero. Moreover, L(1, f.) is an algebraic linear combination of logarithms of
multiplicatively independent units of the q-th cyclotomic field. In particular,
if fe is mot identically zero, then L(1, f.) is transcendental.

Proof. The proof involves a different approach to the original problem
of Chowla to obtain a generalization of the theorem of Baker, Birch and
Wirsing. More generally, consider an algebraic-valued function f supported
on the co-prime classes (mod ¢) with
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Our strategy is to write

f="Te+fo
where f. is even (that is, f(—n) = f(n)) and f, is odd (that is, f(—n) =
—f(n)). We can write

f= Z Cx X

x#1
where the sum is over non-trivial Dirichlet characters x (mod ¢). The trivial
character does not appear since

a=1
Thus, we have
fe = Z Cx X
x even,x#1
and
Jo= Z CxX-
x odd

We recall that Ramachandra (see Theorem 8.3 on page 147 of [130] as
well as [100]) discovered a set of real multiplicatively independent units in
the cyclotomic field, which we will denote by &, (with 1 < a < ¢/2 and
(a,q) = 1) using the notation of [130]. A fundamental property of these
units is the following formula (see the proof of Theorem 8.3 on page 149 in
[130]): for even x with x # 1, we have

L(17X) = AX Z Y(a) logg(u (251)
1<a<q/2

where A, is a non-zero algebraic number. This is the cyclotomic analogue of
one of the main theorems of [99] in the case of an imaginary quadratic field
(see also [100]) we need in our context. To elaborate, let ¢ be a primitive
g-th root of unity and following Ramachandra [99], define

1_Cad
Mla = H 1—¢d’

d|q,d#q,(d,q/d)=1

dg = %(l_a) Z d,

d|q,(d,q/d)=1,d#q

one sees that & = (%, lies in the real subfield Q(¢ + ¢~1). These are
the multiplicatively independent units for 1 < a < ¢/2 with (a,q) = 1.
Following the calculation on page 149 in [130], we see that

doxta) D loglt— ¢

a=1 dlq,(d,q/d)=1,d#q

Setting
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is a non-zero algebraic multiple of L(1, x). This easily leads to the formula
(25.1) above. For a more detailed theory, we direct the reader to Theorems
8, 9 and 12 in [99] (see also [84] for an application in a different set up).
Thus we have,

L1, f)= Y el(lx)

x even,x#1

= Z cx Ay Z X(a)log &,

x even,x#1 1<a<gq/2

= Z Z Ay x(a) | logé&a.

1<a<gq/2 \xeven,x#1

Since the &,’s are multiplicatively independent, the log&,’s are linearly
independent over Q. By Baker’s theorem, they are linearly independent
over Q. Consequently, L(1, f.) = 0 if and only if

Z Ayex(a) =0, 1<a<qg/2

x even,x#1

Now the even characters of (Z/gZ)* can be viewed as characters of the
group (Z/qZ)*/{£1}. Thus by Lemma 110 and since A, # 0, we deduce
that ¢, = 0 for all even x. This proves the theorem. [

As an immediate corollary, we deduce the following result in the classical
case:

Corollary 114 L(1,x), as x ranges over non-trivial even characters mod
q, are linearly independent over Q.

We remark that the above corollary together with Schanuel’s conjecture
implies the algebraic independence of the L(1, x) as x ranges over the even
Dirichlet characters mod gq.

Finally, we shall need the following observation which we leave as an
exercise.

Lemma 115 For any odd Dirichlet character x, L(1,x) is equal to an
algebraic multiple of .

We can now prove the main result of the chapter. As noted above, for
odd characters, each L(1, x) is equal to an algebraic multiple of 7. However
for an even non-trivial character, as we have seen before, L(1,x) is a non-
zero algebraic multiple of

doxta) D loglt =Y.

a=1 d|q,(d,q/d)=1,d#q
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Thus in view of Lemma 112, the Q-space generated by the even L(1, )
values is linearly disjoint from that generated by the odd L(1,x) values.
Since for any odd character x, L(1,x) # 0, this proves our main theorem.

Exercises

1. Prove Lemma 115.

2. Prove Artin’s theorem that the irreducible characters of a finite group
are linearly independent over the field of complex numbers.

3. Show that Schanuel’s conjecture implies that the numbers L(1, ),
where x ranges over the non-trivial even Dirichlet characters mod g,
are algebraically independent.

4. Show that the two conditions in the statement of the Baker-Birch-
Wirsing theorem, namely f(n) = 0 whenever 1 < (n,q) < ¢ and the
g-th cyclotomic polynomial is irreducible over Q(f(1),..., f(q)), are
both necessary.
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Transcendence of values of
class group L-functions

In this chapter, we consider the analog of the questions discussed in Chapter
25, now for class group L-functions. We refer to the original work [82] for
further details.

Let K be an algebraic number field, f a C-valued function of the ideal
class group Hx of K. Here, we consider the Dirichlet series

L(s, /)= I\J;((Z)) (26.1)

where the summation is over all integral ideals a of the ring of integers, O,
of K. If f is identically 1, then L(s, f) is the Dedekind zeta function of K.
If f is a character x of the ideal class group Hx of K, then, L(s,x) is a
Hecke L-function. Our goal in this chapter is to investigate special values
of L(s, f) at s = 1 in the case that K is an imaginary quadratic field and
f is Q-valued.

We shall investigate the transcendental nature of L(1,x) when x is an
ideal class character. The basic tools are Kronecker’s limit formula and
Baker’s theory of linear forms in logarithms. In particular, we will show
that the values L(1,x) are linearly independent over Q as y ranges over
non-trivial characters of the ideal class group (modulo the action of complex
conjugation on the group of characters). This is analogous to the result we
discussed in Chapter 25.

We will use Kronecker’s limit formula as discussed in the works of Siegel
[113], Ramachandra [99] and Lang [73]. We cannot give an in-depth dis-
cussion about these topics, but shall be content with a brief review.

Let A(z) be the Ramanujan’s cusp form:

A(Z) =q H(l _ qn)24’ q= e2miz.
n=1
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Now let K be an imaginary quadratic field and let b be an ideal of Og. If
[B1, B2] is an integral basis of b with (82/61) > 0, we define

g(b) = (2m) T2 (N(0))°A(B1, Ba).

Here A(wy,ws) = wl_mA(:’—f). One can verify (as on page 109 of [99]) that
g(b) is well-defined and does not depend on the choice of integral basis of
b and in fact g(b) depends only on the ideal class b belongs to in the ideal
class group (see Lemma 2 of [99], also page 280 of [73]). Thus, if € is an
ideal class, we write g(€) for the common value g(b) as b ranges over the
elements of the class €

Let di be the discriminant of K and w denote the number of roots of
unity in Ok . Writing

for the ideal class zeta function, we have by Kronecker’s limit formula

2 1 1
(o, 8) = —F ( 2y — log |dc| — S log |g<¢-1>) L O(s— 1),
w |dK| s—1 6
(26.2)

as s — 17. (Note that there is a sign error in formula (2) on page 280 of
[73].)

Proposition 116 If ¢, and €, are ideal classes, then g(€1)/g(Cs) is an
algebraic number lying in the Hilbert class field of K.

Proof. This follows immediately from Lemma 3 of [26] and is a classical
result from the theory of complex multiplication. [J

Proposition 117 For any ideal b, g(b)/g(Ok) is an element lying in the
Hilbert class field Ky of K. If p is a prime ideal of K and o, is the
Frobenius automorphism in Gal(Kg/K) , then

ap (9(6)/9(OK)) = g(p~'6)/9(p™ Ok), 9(b)/9(Ok) = g(b~")/9(Ok).

Proof. The first part is the content of Theorem 1 on page 161 of [73].
The action of complex conjugation is easily deduced from the equation

j(b) = j(b) for the j-function. OJ

Now we come to the following theorem. We have seen a similar result
already in Chapter 22.

Theorem 118 L(s, f) extends analytically for all s € C except possibly at
s = 1 where it has a simple pole with residue

pri= > f(a).
acEHK

The series (26.1) converges at s =1 if and only if py = 0.
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Proof. We first write
= > f(&)(s,2)
CeHk

Each ((s, €) extends to all s € C with the exception of s = 1, where it has
a simple pole with residue

2m (QW)TZRK
wy/ldg]

where 71 is the number of real embeddings, 2r; is the number of complex
embeddings and Rk is the regulator of K. We conclude that L(s, f) extends
analytically to all s € C apart from a simple pole at s = 1 with residue

2M 27T T2RK Z
f(e
wy/ldg| g

Thus, L(s, f) is analytic at s = 1 if and only if py = 0. To study the
convergence of the Dirichlet series L(s, f) at s = 1, we proceed as follows.
The number of ideals with norm < z and lying in a fixed class € is well-
known to be (see [72]),

2" (2m)"2 Rk
wy/|dx]|
where d is the degree of K over Q. Letting

> )

N(a)<z

z+ O(z71), (26.3)

we have by the general technique of partial summation (see p. 17 of [79])

that  §(x)
x
L(s, f) = 8/1 v dz,

for ®(s) > 1. Now,

= Z Z f(a) Z f(e (2“ 2W|);217Kx + O(xdil)>

CeHK ac€,N(a)<z CeHk
which is easily seen to be

Zﬂ@tﬁz@m+0@%ﬂ.
wy/|dK|

Hence, by partial summation, it follows immediately that the Dirichlet
series L(s, f) converges at s = 1 if and only if py = 0. This completes the
proof. [
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Thus, in the case that the series converges at s = 1, it makes sense to

consider the Dirichlet series L(1, f) which is equal to ) 1{1((?). By a deeper

analysis, we will show:

Theorem 119 Let K be an imaginary quadratic field and f : Hrx — Q
be not identically zero. Suppose that py = 0. Then, L(1, f) # 0 unless
f(€) + f(€7Y) = 0 for every ideal class € € Hx. Moreover, L(1, f)/x is
a Q-linear combination of logarithms of algebraic numbers. In particular,
L(1, f) /7 is transcendental whenever L(1, f) # 0.

This result has several interesting corollaries. Before giving a proof of
the above theorem, let us first derive these consequences.

Corollary 120 Let K be an imaginary quadratic field and x a non-trivial
character of the ideal class group of K. Then, L(1,x)/m is a non-zero
Q-linear combination of logarithms of algebraic numbers and hence tran-
scendental.

Proof. To prove this corollary, we begin by noting that in the case K is an
imaginary quadratic field, the formulas become simple and we can apply
Kronecker’s limit formula. In this situation, when the series converges, we

have by (26.2),

L(1, ) @)1 e . 26.4
. 3WW¢§Kf oglg(€™)| (26.4)

Now we invoke Proposition 116. Indeed, by this proposition, we have for
the identity class €, that g(€71)/g(€) is algebraic. Thus, as py = 0, we
have

2o ) 1o & 26.5
2 = i 2 [ oela(E e (269

for any fixed class €y of H. Specializing to the case f = x, where x is a
non-trivial character of the ideal class group H g, and using the celebrated
theorem that L(1,x) # 0, we deduce Corollary 120 by virtue of Baker’s
theorem. This completes the proof. [J

Since complex conjugation acts on the group of ideal class characters
we see by a simple calculation that L(1,x) = L(1,%) for any ideal class
character x. We denote by H} a set of orbit representatives under this
action. Now we have:

Corollary 121 Let K be an imaginary quadratic field and Hy its ideal
class group. The values L(1,x) (as x ranges over the non-trivial characters
of H3;) and 7 are linearly independent over Q.
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Proof. Suppose that

Z CXL(17X) E@ﬂ'a

x#L,x€H}

for some ¢, € Q. Then, setting

f = Z Cx X5

X#L,x€EH

we have L(1, f)/m is algebraic. Since py = 0, we can apply Theorem 119
and deduce that f is identically zero. By the independence of characters,
this means that each c, is zero. O

Thus, in the special case that the ideal class group Hx is an elementary
abelian 2-group, the corollary implies that the L(1, x) as x ranges over the
non-trivial characters of H, are linearly independent over Q.

Theorem 119 also implies that at most one such L(1,x) is algebraic.
Indeed, the following corollary follows directly from Corollary 121 since
two algebraic numbers are linearly dependent over Q.

Corollary 122 All of the values L(1,x) as x ranges over the non-trivial
characters of Hj;, with at most one exception, are transcendental.

The elimination of this singular possibility, in other words, the proof of
transcendence of L(1, x) for all non-trivial x seems difficult and is related to
Schanuel’s conjecture. Indeed, a “weaker” version of Schanuel suffices for
our purposes. This is the conjecture that logarithms of algebraic numbers
which are linearly independent over Q are algebraically independent. As-
suming the “weaker” Schanuel’s conjectur which was discussed in an earlier
chapter, one can show the transcendence of L(1, ) for all non-trivial x.

We now come to the proof of Theorem 119. In view of (26.5) and Baker’s
theorem, the only part of Theorem 119 that remains to be proved is the
non-vanishing of L(1, f) subject to the hypothesis of the given theorem. To
this end, we will require three lemmas.

Lemma 123 Let K be an imaginary quadratic field and f : Hx — Q.
Then, L(1, f) = 0 implies that L(1, f7) = 0 for any Galois automorphism
o of Gal(Q/Q).

Proof. Equation (26.5) expresses L(1, f)/m as a linear form of logarithms
of algebraic numbers. Now choose a maximal set of Q-linearly indepen-
dent numbers from {log|g(¢~1)/g(€o)| : € € Hx}. Denote this set by
log oy, ..., log a;. Thus,

log [9(€™)/9(€0)| = > #(&, ) log a,

Jj=1
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where the z(€, j)’s are rational numbers. Hence

L(1, f)=— 3“}\/sz Z f(@)x(e, j) log ov;.

j=l1C¢cHk

If L(1, f) = 0, then Baker’s theorem gives that

> @€ ) =0, j=12 .t

CeEHK

Since the z(€, j)’s are rational numbers, we deduce that for every Galois
automorphism o,

N @) =0, j=1,2..t

CeEHK
Consequently, L(1, f7) =0. O

The next lemma allows us to reduce the proof of Theorem 119 to the
case when f is rational-valued.

Lemma 124 Let M be the algebraic number field generated by the values
of f. Let r =[M : Q] and choose a basis (1, ..., 3 of M over Q and write

(@) =Y Bifi(®)
i=1
with f;(€) rational. Then, L(1, f) = 0 implies L(1, f;) =0 fori=1,2,...,r.

Proof. Let M = MM ..., M(") be the conjugate fields of M. The map r —
2 from M to M) extends to a Galois automorphism o; of Gal(Q/Q).
Thus,

i) =" Y fi(©).

i=1

Clearly, the matrix (Bi(J )) is invertible since (1, ..., 8, is a basis, and we can
express f;(€) as a Q-linear combination of the f%i(¢). By Lemma 123, we
have that L(1, f) = 0 implies L(1, f9) = 0 for every j. Thus, L(1, f;) =0
for 1 <i <r, as desired. [J

Lemma 125 If f is rational-valued and L(1, f) = 0, then f(€)+ f(€71) =
0 for every ideal class €.
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Proof. If L(1, f) = 0, then

> H(@)loglg(e!)/g(€o)] = 0.

CeEHK

Clearing denominators, we may suppose that f is integer-valued. Expo-
nentiating the above expression gives

I

CcHi

f(®)

g@ " _

9(€o)

To remove the absolute values, we square the expression and pair up € with
¢! and re-arrange it to deduce that

9(€) F(@)+f(E) B
1;[ [9(%)} -t

Each of the factors in the product is an algebraic number and applying
Proposition 117, we see that

H {g(p_lﬂi_l) :| F(@)+f(e™h)

=1
g(p~=1¢)

)

[

for any prime ideal p of Og. Taking absolute values and then logarithms,
we conclude that

D (F(@) + f(& ) loglg(p~'e ") /g(p™'€0)| = 0,

[

for every prime ideal p. By the Chebotarev density theorem, the p~!’s
range over all elements of Hg as p ranges over all prime ideals of Ok.
We view these equations as a matrix equation

DF =0

where F is the transpose of the row vector (f(€7!))ecm, and D is the
“Dedekind-Frobenius” matrix whose (i, j)-th entry is given by

log g(€;1¢;)/g(€; )

with €;,€; running over the elements of the ideal class group. The first
column of D is the zero vector and we can re-write our matrix equation as

DoFy =0

where Fp is the transpose of the row vector (f(€7'))ex1 and Dy is the
matrix obtained from D by deleting the row and column corresponding to
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the identity element. By the theory of the Dedekind determinants discussed
earlier (see also p. 71 of [130]), the determinant of Dy is

11 <Z x(a) 1Ogg(a_1)> # 0,

x#1 \ a

since by formula (26.4), each factor is upto a non-zero scalar, L(1, x), which
is non-zero. Thus, f(€) + f(€~1) =0 for all € # €. Since

DO+ fEh) =0,
[

we deduce that f(€) + f(€5") = 2f(€) = 0 as well. This completes the
proof. [J

The proof of Theorem 119 can now be given as follows. First, if f is
rational-valued, we are done by the previous lemma. Lemma 124 allows us
to reduce to the rational-valued case. This completes the proof.

When Y is a genus character, one can relate L(1, x) to classical Dirichlet
L-functions attached to quadratic characters [113]. Let us first recall the
relevant notions. As before, let K be an imaginary quadratic field with
discriminant D < 0. Real-valued characters of the ideal class group of K
are called genus characters. These characters can be extended to functions
on the ideal classes of Ok in the obvious way. Such extended characters
take on only the values 0, 1. By a classical theorem of Kronecker, they
have a simple description. For each factorization D = Dy Dy with Dy, Do
being fundamental discriminants, we define a character xp, p, by setting
it to be

_ Jxp.(N(p)) if (p,D1) =1
XD;,D(P) {XDZ(N(p)) if (p,Dy) = 1.

One can show that this is well-defined and that it defines a character on the
ideal class group. We refer the reader to page 60 of [113] for the background
on genus characters. We have the Kronecker factorization formula:

(26.6)

L(Sv XD1,D2) = L(Sv XD1)L(Sa XDz)'
Corresponding to the factorization D = 1- D, we get

L(s,x1.0) = ¢(s)L(s,xD)-
The left hand side is (x(s) and so we can write
Z 4(87 Q:) = C(S)L(Sv XD)
CeHK

This identity could have been derived in other ways. Applying the Kro-
necker limit formula (26.2), and comparing the constant term in the Laurent
expansion of both sides, we obtain as in [113]:
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Proposition 126

2m 1 -
V(L x0) + (L xw) = e 3 (29~ towle] - g loglae ] )

Wy |dK‘ CcHi

Using Dirichlet’s class number formula, we deduce:

Corollary 127

1
= —log|dk| - 6h Z log |g(€)],
CeHi

where h denotes the order of Hy .
In particular, we deduce the following interesting result.

Theorem 128 For any ideal class €,

L(xp) 1
2 XP) 4 S log lg(€
iy ~ 7+ glosla(@)

is a Q-linear combination of logarithms of algebraic numbers.

We will make fundamental use of the following result of Nesterenko [92]
which we recall again.

Proposition 129 For any imaginary quadratic field with discriminant —D
7D

and character xp, the numbers w, e and

D
[ 0(a/Dye®,
a=1

are algebraically independent over Q.

Now we have all the ingredients ready to prove the following.
Theorem 130 Let K be an imaginary quadratic field with character xp.
Then,

oo (E020) )
L(]-v XD)
and 7 are algebraically independent. Here v is Fuler’s constant.

Proof. We shall first analyze the asymptotic behaviour of the formula in
Corollary 127 using the theory of Hurwitz zeta functions. Recall that the
Hurwitz zeta function ((s, z) is defined by the series

— 1
C(s,) := Z CEeSIk

n=0
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This series converges for $(s) > 1 and Hurwitz showed how one can extend
it to the entire complex plane apart from s = 1 where it has a simple pole
with residue 1. Given a Dirichlet character y mod ¢, we can write

q

L5 =3 X2 _ = S (a)c(s,a/a).

n
a=1

Thus,

q q

L'(s,x) = —(logq)g—* > x(a)¢(s,a/q) +q4* Y _ x(a){'(s,a/q).

a=1 a=1

Using the well-known formulas

C0,0) = 5~ C(0,2) = log(T()/2n),

where the differentiation is with respect to the s-variable, we deduce that

q

L(0,x) = > x(a)(1/2 = a/q),

a=1

and
q

L'(0,x) = —(log ) L(0, x) + Y _ x(a) logT'(a/q), (26.7)
a=1
since 3.?_, x(a) = 0. If x is odd and primitive, L(s, x) satisfies a functional
equation of the form

AT ((s +1)/2)L(s, x) = wA ™ *T((2 — 5)/2)L(1 — 5,%),

where w (called the root number) is a complex number (see page 71 of [32])
and A = /q/m. We also recall that for quadratic characters x, the root
number w is 1. We logarithmically differentiate this expression to obtain:

1 r 1 r _
log A+ S9((s +1)/2) + - (s,x) = —log A = 59((2 = 5)/2) = (1 = 5,%),
where 9 (s) denotes the digamma function, which is the logarithmic deriva-
tive of the gamma function. Putting s = 1 into the formula, and using (see,
for example, p. 301 of [85])

Y1) =y, ¥(1/2) = -y —2log2

we deduce , ,

L
L(l,x):—2logA+7+log2—f(O,X). (26.8)

Now we specialize our discussion to quadratic characters associated to an
imaginary quadratic field K. Such a character is necessarily odd and if K
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has discriminant — D, then this character, which we denote by xp is a prim-
itive character modulo D. In this situation, we have from the functional
equation

L(0,xp) = 2hp/wp, (26.9)

where hp and wp denote the class number and number of roots of unity
of K. Thus, injecting formula (26.7) into equation (26.8), we get on expo-
nentiating,

L'(1,xp) B D o
P (L(l,x,f)—v) — (2D/A2) [[ T(a/ D) XP(@wn/2ho,

a=1
By Proposition 129, and the fact that A = y/D/mw, Theorem 130 is now

immediate. [J

Thus, we have from the above theorem that
o (L020) )

is transcendental. In particular,

L/(l, XD)
L(1,xp)

for any D. More generally, we have:

# Vs

Corollary 131
L/(l, XD)

18 not equal to logarithm of an algebraic number.

From the theorem, we can also deduce the following curious corollary.

Corollary 132 If for some D, we have L' (1,xp) = 0, then €7 is transcen-
dental.

It is unlikely that such a D exists for a variety of reasons. But this
seems difficult to prove. We shall have the occasion to come back to this
theme at the end of this chapter.

Theorem 130 allows one to connect this non-vanishing question to special
values of the I'-function via the Chowla-Selberg formula. Indeed, the proof
of Theorem 130 leads to a simple proof of the Chowla-Selberg formula which
we spell out now. We can combine the calculations done previously with
Corollary 127 to deduce the Chowla-Selberg formula:

D

1 2hp

CeHK
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Let us analyze the left hand side of this equation following [49]. Let E be
an elliptic curve with complex multiplication by an order in the imaginary
quadratic field K = Q(v/—D). Formula (3) of [49] states that any period
of E, upto an algebraic factor, is given by the right hand side of the above
equation. In other words,

f(xp) = [ T(a/ Dy

is equal to a product of a power of m and a power of the period of the
CM elliptic curve attached to the full ring of integers of Q(v/—D) (upto an
algebraic factor).

More generally, we can define for any character x (mod D),

D
F00 = [ T(a/Dyx.

Let g|D and x be a real primitive character (mod ¢). Let x* denote the
character obtained by extending y to residue classes (mod D). Then, it is
not hard to see that f(x*) is (upto a non-zero algebraic factor) equal to
f(x). Indeed, recall that

D(2)T(z+1/q) - T(z+ (¢ —1)/q) = ¢"/*>7%(2m) 1~/ (¢z).

Thus, f(x*) =

D q

L(a/D @ = T[N (a/D)T((a+q)/D)---T((a+ (D/q — 1)q) /D)X

a=1 a=1

q
H (a/q)(27) (D/q—1) /2(D/ )1/2 a/q] x(a )=f(x)(D/q) a-1(1/2—a/q)x(a)

Since x is a real character, the exponent of D/q is rational and so the
second factor is algebraic and non-zero. Consequently, f(x) and f(x*) are
equal apart from a non-zero algebraic factor. Let us record this remark
here since it will be used later.

One can consider a more general situation where one considers functions
f defined on ray class groups and similar formulas and results can be derived
(see [84], for instance).

As is evident, these investigations naturally lead to the study the pos-
sible transcendence of special values of the I'-function. As we have seen
before, not much is known in this context. While I'(1/2) = /7 is tran-
scendental by the theorem of Lindemann, the transcendence of I'(1/3) and
I'(1/4) was established by Chudnovsky [29] in 1976. Recently, Grinspan
[47] and Vasilév [124] independently showed that at least two of the three
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numbers 7, I'(1/5),T'(2/5) are algebraically independent. Very likely, all of
the three numbers are algebraically independent. Apart from these results,
no further results are known regarding the transcendence of the I'-function
at rational, non-integral arguments. Thus, in this context, the following
theorem is of interest.

Theorem 133 Let ¢ > 1 and q|24. Let a be coprime to q. There exists a
finite set S and a collection of pair-wise non-isogenous CM elliptic curves
E;, j €S defined over Q with fundamental real periods w; such that I'(a/q)
lies in the field generated over Q by m and the w;. In particular, if T and
the w;’s are algebraically independent, then T'(a/q) is transcendental.

Proof. For each odd quadratic character xp, we have an associated imag-
inary quadratic extension kp. Thus, f(x) is defined for any odd quadratic
character. We can associate a CM elliptic curve Ep, with ring of endomor-
phisms isomorphic to the ring of integers of kp. Let wp be the real period
of Ep. The Chowla-Selberg formula expresses

D
Z xp(a)logT'(a/D)

as a Q-linear form in log 7, log wp and the logarithm of a non-zero algebraic
number. For any divisor ¢ of 24, every non-trivial Dirichlet character mod
q is quadratic. Noting that

> xla) = ¢(9)/2,

if @ = £1(mod q) and zero otherwise, we deduce that

v(q)/2  ifa=1(modgq)
> x(a) =1 —¢(q)/2 ifa=—1(modq)

x odd 0 otherwise.

By considering the combination
1T 10X
x odd

where the product is over odd characters (mod ¢), we find

[T £00X® =[] T(a/q)Zeaax(e,

x odd a=1
Since for any divisor ¢ of 24, b*> = 1(mod q) for any b coprime to ¢, we have

ab = 1(mod q) implies a = b(mod q). Thus,

v(q)/2  if a =b(modq)
Z x(ab) = ¢ —p(¢q)/2 if a = —b(modq)

x odd 0 otherwise.
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and we deduce that
T(a/q)T(1—a/q)~"

is the product of an algebraic number, a power of 7 and a product of powers
of periods of non-isogenous elliptic curves. On the other hand,

L(a/@)T(1 —a/q)

is a product of m and an algebraic number. Thus, we deduce that I'(a/q)
is (upto an algebraic factor) a product of a power of 7 and periods of
non-isogenous elliptic curves. This completes the proof. [

To summarize, the key point here is that the non-trivial Dirichlet char-
acters (mod 24) are all quadratic which allows the use the Chowla-Selberg
formula as stated before to express I'(a/q) as a product of 7 and periods of
various non-isogenous elliptic curves.

Before moving on in our discussion, we observe this amusing corollary
of the above theorem:

Corollary 134 All of the numbers
['(1/8),1(3/8),T'(5/8),['(7/8)
are transcendental with at most one exception.

Proof. To prove this, we suppose that at least two of the numbers,
[(a/8),T(b/8) (say), among

I'(1/8),T(3/8),T(5/8),T(7/8)

are algebraic. By the proof of the previous theorem, we can write each term
as a product of powers of m and periods w; and wy of two non-isogenous CM
elliptic curves. By taking appropriate powers of I'(a/8),T'(b/8), we deduce
that their quotient, which is algebraic, is a product of powers of m and w;.
By the result of Chudnovsky [29], we know that 7 and wy are algebraically
independent. This completes the proof. [

Recall that Schanuel’s conjecture predicts that if zq, ..., z, are linearly
independent over QQ, then the transcendence degree of the field

Q(z1y oy Ty, €71, o €7™)

is at least n. At the end of chapter 21, an elliptic-exponential extension of
this conjecture has been spelt out. The previous theorem also motivates
the following special case of this conjecture.

Suppose that 1, ...,x, are linearly independent over Q. Let po, ..., pn be
the Weierstrass p-functions attached to non-isogenous CM elliptic curves
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Es, ..., E, defined over Q. If zo, ...,z are not contained in the poles of the
i, 2 < i <mn, then, the transcendence degree of the field

Q(‘rh ooy Ly 6I1792<$2)7 MRS pn(x’ﬂ))

s at least n.

Thus, choosing 21 = mi and z; = w;/2 with the w; as in Theorem 133,
the conjecture allows us to deduce that = and the w;’s are algebraically
independent.

The above conjecture is also a special case of a more general conjecture
of Grothendieck (see [33]). This conjecture asserts that the transcendence
degree of the field generated by the periods of an algebraic variety is equal
to d where d is the dimension of the Hodge group of the variety. In our
case, we consider the variety

X=P'xEyx---xE,

where FE; are pairwise non-isogenous elliptic curves with complex multipli-
cation. The Hodge group of H?(P!)® --- ® H*(FE,,) is isomorphic to

n

Gm X H(RKi/QGm)la

=2

where K; is the imaginary quadratic field corresponding to E; and the
superscript denotes elements of norm 1. The dimension of this group is n.

It is clear from the preceding discussions that the non-vanishing of cer-
tain Dirichlet series is connected with linear independence of special values
of L-series. Such a theme was explored in a classical context in [55].

Also it highlights the pivotal role played by L’(1,x) with x a Dirichlet
character, more precisely the vanishing of L'(1, x) for any Dirichlet charac-
ter x (mod ¢). In this context, we shall derive an analytic result about the
number of x # xo (mod ¢) for which L'(1,x) =0

For this we shall use the the following result of Y. Thara, K. Murty and
M. Shimura which is Theorem 5 of [62].

Proposition 135 Let Ag(1) = 1 and Ao(n) = 0 for n > 1. Define for
k> 1,

Ar(n) = Y A(m)--- Alm),

ni--Ng=n
where A denotes the von Mangoldt function. Set
a ad Aa n)Ab n
o) = 3 Rl
n=1

Then, for q prime and any € > 0

L/
Topi= ) P <L(1’x)> = (—1)**ul*P(g) + O(q"),
XFX0
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where P(*Y)(2) = 2970,

It is easy to see that the series for ;(%?) converges. Indeed, A(n) < logn
so that Ay (n) < di(n)(logn)*, where d,(n) denotes the number of factoriza-
tions of n as a product of k natural numbers. Consequently, Ai(n) = O(n®)
for any € > 0.

We now have the following theorem:

Theorem 136 For q prime, the number of x # Xxo (mod q) for which
L'(1,x) =0 is O(q) for any e > 0.

Proof. We apply the previous proposition with a = b =k and a = b = 2k.
An application of the Cauchy-Schwarz inequality to the sum

L
§ (k.k)
X#X g <L (1’X)>
0]

shows that for any k& > 1,

2

#{x#xo0:L'(1,x) #0} >

T2k: 2%

Let us note that

T2 = (W5)20(q)% + O(¢(q)q°)

and that

(’u(k,k))2: Z Ak(n1 Ak n2 Z A2 A2 ( )

’fl n
ni,n2 172 n=1

where

(f*g)(n Zf g(n/d),

is the Dirichlet convolution. Now, if d(n) denotes the number of divisors of

n,

2

AQk( ) (Ak*Ak 7’L ZAk Ak TL/d

Z/@ d)A} (n/d) = d(n) (A} x A7) (n),

by an application of the Cauchy—Schwarz inequality. As d(n) = O(n®) for
any € > 0, we obtain

A2 (TL) (A2 *1\2)(77,)
2k,2k § : k k k
/J/( ) = 2n2 .

n=1 n=1
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Putting
(A2 x A2 (n
et = 3 WA
n=1

we conclude

Tk Gu(2)9(a)* + O(p(9)a)
Toror — Gr(2—e1)p(q) + O(q%)

for any €1, €2 > 0. Choosing k£ = 2 and noting that
G2(2 — 61) = Gg(z) + 0(61),

we conclude that

=—— = ¢(q) + O(q).
The result immediately follows from choosing ¢; = 1/¢. O

It is unlikely that one can show the non-vanishing of L'(1, x) in general
using such analytic methods.

The question of non-vanishing of L'(1,x) arises in other contexts like
the following. Let K be an algebraic number field and (k(s) its Dedekind
zeta function. It is well-known that (x (s) has a simple pole at s = 1 with

residue A\ . Here,
. 2" (2m)"2h R

wy/ldg]

where 71 is the number of real embeddings of K and 2r; is the number
of non-real embeddings of K, hx, Rg, w and di are the class number,
regulator, the number of units of finite order and discriminant, respectively,
of K. Let us set

AK

9K (s) = Cr(s) — Ax((s).

Then, gk (s) is regular at s = 1. In [109], Scourfield asked if for any field
K # Q we have gi (1) = 0. This question is really about non-vanishing of
linear combinations of derivatives of L-functions.

To see this, we write

Cr(s) = C(s) Fie (s),

where F(s) is a product of certain Artin L-series. Using Brauer’s induction
theorem and the non-vanishing of Hecke L-series at s = 1, it is easily seen
that F(s) is regular at s = 1. Consequently, Fix (1) = Ax and since

Cr(s) — Ak ((s) = C(s)(Fk(s) — Ak),

we see that gi (1) = Fj(1). If K denotes the normal closure of K over Q,
and G = Gal(K/Q), one can express Fi(s) as a product of Artin L-series
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attached to irreducible characters of G. Indeed, if H = Gal(l/(\'/K), Cr(s)
is the Artin L-series attached to the character Indfl 1. If x is an irreducible
character of GG, we have by Frobenius reciprocity,

¢y = (Ind% 1,%) = (1, x|n)

which is the multiplicity of the trivial character in x restricted to H. Thus,
¢y is a non-negative integer and we have

Fre(s) = ] Ls, 0,

x#1
where the product is over the non-trivial irreducible characters of G. Hence,
Fi(1) r
= ey—(1,x).
Fi(1 Z XL
i (1) x#1

In the special case K/Q is Galois, ¢, = x(1). Thus, in the Galois case, the
question of non-vanishing of gx (1) is equivalent to the non-vanishing of

S .

x#1

If K = Q(¢,) is the ¢-th cyclotomic field, with {, being a primitive
g-th root of unity, then Y. Thara, K. Murty and M. Shimura [62] have
investigated the asymptotic behaviour of this sum. They proved that

1 > %(1,;@ =0.

q%oo{g%)rime ¢<q) Fxi

So the question of non-vanishing of gx (1) is a bit delicate and cannot be
deduced from this limit theorem.

The non-vanishing of L'(1, x) seems to be intimately linked with arith-
metic questions. For example, if K/Q is quadratic, then Fg(s) = L(s,xp)
where xp is the quadratic character attached to K. In this case, Scour-
field’s question reduces to the question of whether L'(1,xp) = 0 for any
such xp. As we mentioned before, it is unlikely that such a yp exists.

Exercises

1. Using equation (26.3), show that the series (26.1) admits a meromor-

phic continuation to (s) > ﬁ with at most a simple pole at s = 1.

Moreover, the simple pole exists if and only if p; # 0.
2. Show that the character xp, p, given by (26.6) is well-defined.
3. Prove that ¢'(0,z) = log(T'(x)/27).

4. Prove the class number formula (26.9).



Chapter 27

Transcendence of values of
modular forms

In this chapter, we shall apply the results of Schneider and Nesterenko
to investigate the values of modular forms at algebraic arguments. Any
reasonable account of the fascinating subject of modular forms will require
us to embark upon a different journey which we cannot undertake in the
present book. We refer to the books ( [37], [66], [71] ) for comprehensive
accounts of this subject. However, for the purposes of this chapter, we shall
be needing very little input from the theory of modular forms.

As we have been observing throughout, the naturally occurring tran-
scendental functions like the exponential function and the logarithm func-
tion take transcendental values when evaluated at algebraic points, except
for some obvious exceptions. This is also exhibited by the Weierstrass-p
function associated to an elliptic curve defined over number fields. We
also expect other transcendental functions like the gamma function and
Riemann zeta function to exhibit similar properties.

We will now investigate this phenomena for modular forms which are a
rich source of transcendental functions. We begin by fixing some notations
and recalling the various results in transcendence relevant for our study.

Let H denote the upper half-plane. For z € H, we have the following
functions

Ey(2) =1-24)  o1(n)e*™™"?,
n=1

E4(Z) =1+ 240 Z 0’3(71)627rmz,

n=1

Eg(z) =1-504)  o5(n)e’™?,
n=1
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where ox(n) =324, d*. We also have the j-function given by

Ey(z)?

IO =118 Py P

We call an element « in the upper half plane to be a CM point if it
generates a quadratic extension over the field of rational numbers. It is
known, from classical theory of complex multiplication, that if z € H is a
CM point, then j(z) is an algebraic number, lying in the Hilbert class field
of Q(2). For instance, we have j(i) = 1728 while j(p) = 0 where p = €>7¥/3,

For algebraic points in the upper half plane, we have already seen the
following result of Schneider:

Theorem 137 (Schneider) If z € H is algebraic, then j(z) is algebraic if
and only if z is CM.

Much later, Chudnovsky ([29], see also [30]) in 1976 showed that if z € H,
then at least two of the numbers Es(z), E4(z), Fg(z) are algebraically
independent. Chudnovsky’s theorem proves that I'(1/3) and I'(1/4) are
transcendental. In 1995, K. Barré-Sirieix, G. Diaz, F. Gramain and G.
Philibert [13] made a breakthrough in transcendence theory by proving the
long-standing conjecture of Mahler and Manin according to which the mod-
ular invariant J(e2™*) := j(2) assumes transcendental values at any non-
zero complex (or p-adic) algebraic number €27%* in the unit disc. Note that
such a z is necessarily transcendental. Finally, Nesterenko [90] provided a
fundamental advance by generalizing both the results of Chudnovsky and
Barré-Sirieix-Diaz-Gramain-Philibert .

Theorem 138 (Nesterenko) Let z be a point in the upper half plane. Then
at least three of the four numbers

627”2

) E2(2)7 E4(Z)a EG(Z)
are algebraically independent.

We note that the result of Schneider does not follow from the theorem
of Nesterenko. As pointed out by Nesterenko ([92], page 31), both his as
well as Schneider’s theorem will follow from the following conjecture:

Conjecture 139 Let z be a point in the upper half plane and assume that
at most three of the following five numbers

ez, Es(z), E4u(2), FEgs(z)

2,

are algebraically independent. Then z is necessarily a CM point and the
field

Q(e*™, En(2), Ea(2), Eg(2))

has transcendence degree 3.
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Let us now begin by considering the nature of zeros of modular forms.
Investigations of such zeros have been carried out by F.K.C. Rankin and
Swinnerton-Dyer [101], Kanou [65], W. Kohnen [69] and S. Gun [51] (see
also [12], [40] and [43]). Let us again recall that a CM point is an element
of H lying in an imaginary quadratic field. Also, every modular form is
assumed to be non-zero.

To study the algebraic nature of values taken by modular forms, we
need to define an equivalence relation on the set of all modular forms with
algebraic Fourier coefficients. We define two such modular forms f and g
to be equivalent, denoted by f ~ g, if there exist positive natural numbers
k1, ko such that f*2 = \g" with A € Q.

We have the following theorem.

Theorem 140 Let f be a non-zero modular form of weight k for the full
modular group SLa(Z). Suppose that the Fourier coefficients of [ are alge-
braic. Then any zero of f is either CM or transcendental.

Proof. Let f be a non-zero modular form of weight k for SLy(Z) with
algebraic Fourier coefficients. Let g(z) be the function defined as

9) = Jr)

where A(z) is the Ramanujan cusp form of weight 12. Thus g(z) is a
modular function of weight 0 and hence is a rational function in j. Since
A does not vanish on H, ¢ is a polynomial in j. Further, since f has
algebraic Fourier coefficients, g(z) = P(j(z)), where P(z) is a polynomial
with algebraic coefficients. If « is a zero of f, then P(j(a)) = 0 and
hence j(«) is algebraic. Thus by Schneider’s theorem, « is either CM or
transcendental. This completes the proof. [J

As before, let A be the unique normalized cusp form of weight 12 for the
full modular group. Then the above theorem easily extends to the following
and hence we skip the proof.

Theorem 141 Let f be as in Theorem 140 not equivalent to A and o € H
be an algebraic number such that f12(a)/A%(a) is algebraic. Then « is
necessarily a CM point.

We note that the above theorem does not say anything about the tran-
scendental zeros of f. However, when f is the Eisenstein series E}, we have
some more information about the location of their zeros. For instance, all
the zeros of Ej up to SLa(Z) equivalence were shown to lie in the arc

{e | 7/2 <6 < 271/3}

by Rankin and Swinnerton-Dyer [101].
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It is worthwhile to point out that for cusp forms, the situation is rather
different. Here we have a result due to Rudnick [106] which is as follows:
let {fx} be a sequence of L?-normalized holomorphic cusp forms for SLy(Z)
such that fy is of weight k, the order of vanishing of fj at the cusp is o(k),
and the masses y*|f1(2)|?dV (z) (where dV(z) stands for the normalized
hyperbolic measure on the fundamental domain) tend in the weak star
topology to c¢dV (z) for some constant ¢ > 0. Then the zeros of f; (in
the fundamental domain) are equidistributed with respect to dV'(z). If the
sequence fi consists of normalized Hecke eigenforms ordered by increasing
weight, then recent work of K. Soundrarajan [119] and R. Holowinsky [59]
(see also [60]) shows that Rudnick’s hypothesis is satisfied and consequently,
zeros of normalized Hecke eigenforms become uniformly distributed in the
standard fundamental domain as the weight tends to infinity.

If f is equivalent to A and « is CM, then f(«) is transcendental by the
theorem of Schneider. On the other hand, if « € H is non-CM algebraic,
the conjecture of Nesterenko mentioned before will imply the transcendence
of f(a). Thus, it is clear that while investigating the nature of values of
modular forms at algebraic numbers in H, we need to consider the values
at CM points and non-CM points separately.

Theorem 142 Let o € H be such that j(a) € Q. Then 2™ and A(a)
are algebraically independent.

Proof. Since j(«) is algebraic, A(a) is transcendental. For, algebraicity of
A(a) will imply that j(a)A(a) = E4(a)? is algebraic and hence both Ej4(c)
and Fg(«) are algebraic. This will contradict Chudnovsky’s theorem. Now
suppose that 2™ = g and A(«) are algebraically dependent. Since A(«) is
transcendental, there exists a non-zero polynomial P(X) =, p;X* where
p;’s are polynomials in A(«) with algebraic coefficients such that P(q) = 0.
Thus g is algebraic over the field Q(E4(c), Es(r)). Since j(«) is algebraic,
transcendence degree of Q(E4(a), Es()) is one which is also the tran-
scendence degree of Q(E4(a), Eg(),q). This will contradict Nesterenko’s
theorem. [J

As a consequence of the above theorem, we now have the following:

Theorem 143 Let a € H be such that j(o) € Q. Then for a non-zero
modular form f for SLa(Z) with algebraic Fourier coefficients, f(a) is al-
gebraically independent with €*™< except when f(a) = 0.

Proof. Suppose that f(«) is not equal to zero. Since the non-zero num-
ber f*(a)/A(a) is a polynomial in j(«) with algebraic coefficients, it is
algebraic. Thus the fields Q(q, f(«)) and Q(g, A()) have the same tran-
scendence degree and hence the theorem follows from the previous theorem.
]
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We note that there exist transcendental numbers a for which j(a) is
algebraic. This is a consequence of CM theory and surjectivity of the j
function. As mentioned before, an algebraic « for which j(a) is algebraic
is a CM point. In this case, A(«) can be explicitly expressed as a power of
period of an elliptic curve defined over Q.

For a non-CM algebraic number, we have the following theorem:

Theorem 144 Let o € H be a non-CM algebraic number. Let S, be the
set of all non-zero modular forms f of arbitrary weight for SLo(Z) with al-
gebraic Fourier coefficients for which f(«) is algebraic. Then, up to equiv-
alence, S, has at most one element.

Proof. Let f and g be modular forms in S, of weight k1 and k5 respectively.
Let a be a non-CM algebraic number in H and suppose that both f(«)
and g(a) be algebraic. Note that by Theorem 140, neither is equal to
zero. We consider the modular form F = f*2(a)g" — g*t (o) f*2 of weight
ki1ks. By Theorem 140, any zero of this modular form is either CM or
transcendental. Since a is non-CM and algebraic, we get a contradiction
unless F' is identically zero. This means that f and g are equivalent in the
sense defined before. [J

The existence of the fugitive exceptional class in the above theorem
can be ruled out if we assume the conjecture of Nesterenko alluded to
before. Further, all these theorems extend to higher levels and also for
quasi-modular forms. We refer to [53] for further details.

Exercises

1. Show that Eg(v/—1) = 0. Deduce that €™, F3(v/—1) and E4(v/—1)
are algebraically independent.

2. Recalling that

6c(cz 4+ d)

Yy

)

az+0b\ 9
E, (cz+d) = (cz +d)*Ea(z) +

show that Ea(y/—1) = 3/m. Deduce from the previous exercise that
m and e™ are algebraically independent.

3. Show that

[ dt T(1/4)?
w.—/l -
Using the theory of complex multiplication, compute the value of
E4(v/=1) in terms of powers of I'(1/4) and 7. Conclude that 7, e™
and T'(1/4) are algebraically independent.

4. Prove Theorem 141.
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Chapter 28

Periods, multiple zeta
functions and ((3)

In this chapter, we will examine some of the emerging themes in the theory
of transcendental numbers. The most fascinating is the “modular connec-
tion” linking it with the theory of modular forms. We have met a part
of this connection in the earlier chapters. In this chapter, we will indicate
some other relations.

The connection between the theory of modular forms and transcenden-
tal number theory goes back at least a century to the celebrated theory of
complex multiplication. More recently, there are several major contribu-
tions, notably by Nesterenko, relating these two themes of number theory.
In addition to this, there is the mysterious proof of Roger Apéry showing
the irrationality of ¢(3) which has been somewhat ‘explained’ by Beukers
[18] using the theory of modular forms. However, it is difficult to find an
exposition of this theme at the graduate student level or even the senior un-
dergraduate level. It is the purpose of this chapter to highlight this theme
and to bring out the salient features of the subject for further study. This
chapter is self-contained and can be read independent of the other chapters.

28.1 The algebra of periods

To keep this chapter self-contained, let us recall that a complex number «
is said to be algebraic if it satisfies a non-zero polynomial equation with
rational coefficients. Otherwise, we say the number is transcendental. It
was not until 1851, when Liouville using a clever approximation argument
managed to give explicit constructions of transcendental numbers. For
instance, he showed that

- 1

2 jgu

n=0
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is transcendental. In 1873, Georg Cantor showed that the algebraic num-
bers are countable and the real numbers are uncountable. Thus, the set of
transcendental numbers is uncountable. However, deciding whether a given
number is transcendental is often a very difficult question. For instance,
e was shown to be transcendental by Charles Hermite in 1873 and n was
proved transcendental by Lindemann in 1882. In view of the 1734 result
proved by Euler, this means that the special values of the Riemann zeta
function at even natural numbers are transcendental since

=1 B
20(2k) =2 — == (22’;! (2mi)?k.
n=1

A similar result is not known for odd values of the Riemann zeta function.
In 1978, Apéry surprised the mathematical community by presenting a
mysterious proof that ((3) is irrational. After more than twenty-five years,
we can explain some aspects of his proof using the theory of modular forms,
but cannot say we understand the proof completely or why it worked. The
purpose of these lectures is to explore this theme in some detail and present
it from the context of the theory of periods.

A period is a complex number whose real and imaginary parts are val-
ues of absolutely convergent integrals of rational functions with rational
coefficients over domains in R™ given by polynomial inequalities with ra-
tional coefficients. Omne can expand this definition by replacing rational
functions by algebraic functions, and rational coefficients by algebraic co-
efficients, though this is not totally trivial to see. However, it can be done
by introducing more variables into the integration process.!

Thus, v/2 is a period since

V2 = dx.

222<1

All algebraic numbers are periods. The simplest non-algebraic number
which is a period is 7 since

= / dxdy.
r2+y2<1

The set of periods, denoted P, contains the algebraic numbers and many
interesting transcendental numbers like 7. Since the set of periods is count-
able, it is clear that the set of numbers which are not periods is uncount-
able. However, to this date, no explicit number has been given which is
not a period. For instance, is e a period? How about Euler’s constant ~7

LA more precise definition can be given as follows. Let X be a smooth quasi-projective
variety, Y C X a subvariety, w a closed algebraic n-form on X vanishing on Y, and all
defined over Q. Let C be a singular n-chain on X (C) with boundary contained in Y (C).
Then the integral |, ¢ w is called a period.
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Most likely, these numbers are not periods. An open question is if 1/7 is a
period.

It is clear that the set of periods forms a ring under addition and mul-
tiplication. An important class of periods is supplied by the special values
of the Riemann zeta function and more generally the multiple zeta values.

The Riemann zeta function ((s) is defined for $(s) > 1 by the Dirichlet

series
1
C(s) = e
n=1

More generally, one can define the multiple zeta function,

1
C(817827"'757‘) = Z T s2 sy

S1 S2
n n ...n
ni>ng>-->n.>1 L2 "

and study it as a function of the r complex variables s1,...,s,. Here, we
will be concerned with the theory of special values of these functions, or
more precisely, the multiple zeta values ((sy, ..., ;) with s1, s9, ..., 8 posi-
tive integers and s; > 2 in order to ensure convergence.

One can express these as periods, in the sense defined above. For exam-

ple, we have
dty dtp_1 dty
G(k) :/ o s Lot
1>t;>-->1,>0 U1 k-1 1 =1tk

as is easily verified by direct integration. Also,

cen= | e
1

Sty stastss0 T 1 —la 1 —tg’

Similarly, we define inductively the iterated integral of continuous differen-
tial forms ¢y, ..., ¢ on [a, b as

[ortn [0 [ [

with the convention that the value is 1 when m = 0. If we define two

differential forms
wWo = 77 w1 =

then one can easily show that
1
C(81y ey Sp) = / Wi rwy e wir T g
0
By a well-known theorem of Chen in algebraic topology, the product of

such integrals is again a linear combination of such integrals given by the
‘shuffle product.’
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With respect to the transcendental nature of the multiple zeta values,
Zagier [134] has made the following conjecture. Let V}, be the Q-vector
space in R generated by the multiple zeta values ((s1,...,s,) with weight
s1+--+s. =k Set Vj =Q, V; =0. Clearly, Vo = Qn?. Then, using the
shuffle relations, we see that

VieVier € Viegar

If we denote by V' the Q-vector space generated by all the V}’s, then Gon-
charov conjectures that

V= @;O:OVk.
Zagier predicts that if dx = dim Vj, then for k > 3,

dpy =dp_o+dp_3 with dy=1,d; =0,dy = 1.

In other words,
= 1
k_
det 1 — 2 37
k=0

It is generally suspected that this conjecture would imply the algebraic
independence of ,((3),¢(5),.... If we let ¢, be the coefficient of t* of the
rational function on the right hand side of the above conjectural formula,
then it is now known by the work of Terasoma [121] as well as the work of
Deligne and Goncharov [34] that

dk S Ck.

Note that while one expects the dimensions dj of the spaces Vj to grow
exponentially in k, we do not have a single example of a space Vj with
dimension at least 2. In this context, in a recent work [55], it has been
established that a conjecture of Milnor about Hurwitz zeta values implies
that infinitely many of these V}’s have dimension at least 2.

We end this section by mentioning a remarkable recent result due to F.
Brown [19]. In this work, he proves a conjecture by M. Hoffman which states
that every multiple zeta value is a Q-linear combination of {(ni,...,n,)
where n; € {2,3}. In particular, Brown’s result is a sweeping generalization
of the works of Terasoma, Deligne and Goncharov. An essential ingredient
in the proof of Brown was supplied by Zagier [135] which involves a formula
for the special multiple zeta values of the form {(2,---,2,3,2,--- ,2) as ra-
tional linear combinations of products ((m)m?"® with m odd. The works of
Terasoma, Deligne, Goncharov as well as Brown involve rather deep alge-
braic geometry, more precisely the theory of mixed Tate motives. We can
do no better than to direct the interested reader to the beautiful Bourbaki
talks of Cartier [24] and Deligne [36]. One wonders if there are simpler,
more direct proofs of the results of Brown.
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28.2 Apéry’s Proof Revisited

There are many expositions of Apéry’s proof of the irrationality of ((3) (see
for example, [123]). We begin by giving a streamlined version of Apéry’s
proof and then analyse it from the standpoint of modular forms.

Apéry begins by considering the recursion

3y 4+ (1 — 1)3u,_o = (340> — 51n% + 270 — 5)u, 1.

Let A, be the sequence obtained by setting Ag = 1,A; = 5 and let B,
be the sequence obtained by setting By = 0 and By = 6. Thus, if we let
P(n) = 34n® — 51n? + 27n — 5, then

n3A, + (n— 1)3An,2 = P(n)A,_1,

3B, +(n—1)3B, o= P(n)B,_1.

Multiplying the first equation by B, _1 and the second by A,_; and sub-
tracting, we deduce that

7’7/3(1471371—1 - An—an) = (n - 1)3(An—an—2 - An—2Bn—1)~
Iterating, we find
nS(Aan_l - An_an) = AlBO - AOBl = —6.

Then, Apéry made some remarkable claims. First, he asserted that A,’s
are all integers. Further, he claimed that B,’s are rational numbers such
that

2 lem(1,2,3,...,n)°B,

are all integers. Finally, one has the following explicit formulas:

=)

k=0
" N2 (n+k 2
Bn: ( ) ( ) Cn,k
— k k
where .
LR ) ()
Cnk = 3 . . . .
;ﬂ ; 25 \J J

It turns out that explicit expressions for the A,’s and the B,’s are not
needed to prove the irrationality of ((3). In fact, from the recursion above,

we see that
B, B,_1 6

Ai'n An—l - nBAnAn—l ’
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From the explicit expressions for A, and B,, we can deduce that B, /A,
tends to ¢(3). Indeed,

2
n n k (™ n+k
| Sy (7 ()
By=A,5 — - Z(‘ ECA R
=0 == () ()
Jj=1 =0j=1 j j
We will show that ]
e (1) (")
J J
This is clear for j = n since
n? <2n> > n?
n

For 1 <j <n-—1, we have

()=

so that )
w= () (") = () ()
J J J J
Thus,
"1 A
Bn_An .*3 Slv
— 9 n
j=1

from which the assertion that B, /A, tends to {(3) follows. One can be a
bit more precise. We have by summing

— (Brt1 Br\ w— 1
Z ( Ak) =0 Z (k+1)3AkAgt1

k=n Ak+1 k=n
B, > 1
3)———=6 —_—
@) Ay kz:; (k+1)3ArAp 1
so that B )
o) - 52| <

We need to estimate the growth of A,. Again, from the recursion this is
easily done. If we divide the recursion by n? and take the limit as n tends

to infinity, we observe that
An ~ Cn

where (), satisfies
Cn + Cn—Q = 34Cn—1-
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The latter recurrence is easily solved and we see that C, is asymptotically
a™ where oo = (1 + \/5)4 =17 + 12v/2 is the larger root of

X2 34X +1=0.

Finally, we need to prove the assertion about the denominators of B,,. To
this end, we observe that

@) o) G ()
#(1)(7) #(5)

simply by writing out the binomial coefficients. Thus, we need to investigate
the power of a fixed prime p that can appear in the denominator, namely,

the power of p in
i 2
()
J

But this is easily done by observing that

)

[log k/ log p]
ord, (’j ) =S ] U] [k — )/

t=0
It is elementary to see that
[z +y] —[z] - [yl <1

with equality if and only if {z} + {y} > 1, where {} denotes the fractional
part of z. In particular, we see that the above summation can begin from
t = ord,(j) + 1 which gives us

ord, <I;) < [log k/ log p] — ordy(j).

Thus,

2
ord, <j3 (l;:) ) < ord,(j) + 2[log k/log p] < 3[log k/ log p],

from which we deduce the statement about denominators. Now suppose
that ¢(3) is rational say C'/D, with C, D co prime integers. Then, for the
non-zero integer, we have the following estimate (from the Prime Number
Theorem) :

2Dlem(1,2, ..., n]%| A, C(3) — B,| < 2o (1 4 /2)=4n,
For n large, this is a contradiction because

e < (14 v2)* = 33.970563....
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In the above proof, the recursion formulas for A, and B, were used
in two places. We remark that we can eliminate the second use of the
recursion where we derived A, ~ a™. Such an estimate was needed only
to get a final upper bound that led to the contradiction. To this end, a
simpler estimate suffices if we observe that for n even, we have

ez (1) ()

An > 0025"/n4

One can see that

for some constant ¢y and this suffices to get the desired contradiction since
e® = 20.085537... < 32 = 2°.

Another approach was taken recently by Yu. V. Nesterenko [91] Follow-
ing earlier work of Gutnik, he considers the rational function
(z =12 (2 —n)?
22(z+1)2--- (2 +n)2’

R(z) =

The function R(z) can be expanded into partial fractions:

K B B
Rz)=) ((z+l<:)2 + z+k>'
It is easy to see that

Bro = (2 + k)2R(2)|oe s = <”+k)2 (")2

and
By = i(( + k:)QR( )] =-2B L — E L
M= z Z))z=—k = k2 g -

It is clear from these expressions that Bjo is integral and that D, By is
integral where
D, = H p[log 2n/ logp].

p<n

If we choose a large enough contour C, then the Cauchy residue theorem
shows that
1

dz = By =
57 CR(Z) z ];) k1 =0,
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since R(z) = O(]z|~2). Using this fact, we deduce that

(o] , n o0 B'2 B X
I:= ;R (v) = ZZ (—2 e —|—kk)3 _ C _,_kk)?) = a,((3) + by,

k=0v=1

where
n
ap = —2 Z By
k=0
and
n k
b, = Z (2Bk-27"73 + Bkl’l”72)
k=0r=1

so that a,, and D2b,, are integers. On the other hand, one can write down
an integral expression for this as

=t ( T )2R(z)dz.

2mi R(s)=C \SINTZ

To see this, we truncate the integral from C + iT to C' — T with T =
N+1/2, N a positive integer > n tending to infinity. We deform the contour
to the rectangle whose vertices are given by (C,-T),(T,-T),(T,T), and
(C,T). On the boundary of the rectangle, 1/sin? 7z is bounded and R(z) =
O(1/T?). Thus, we compute the contribution from the residues: for z = k,
k a positive integer, we have

( T )2:( L_ o),

sinz z—k)?

and
R(z) = R(k)+ R'(k)(z — k) + O((z — k)?),

e (me) 9) = 0

from which the formula is easily deduced. Finally, using the method of
steepest descent, Nesterenko shows that

so that

7T3/223/4 N
I= W(ﬁ_ 1* (1 4 0(1))
as n tends to infinity. From this fact, the irrationality of ((3) is easily
deduced, as before.
Yet a third proof by Beukers [17] uses the family of polynomials
1 dan
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which is easily seen to have integral coefficients. By straightforward inte-
gration, it is easy to see that for r > s,

/ / z"y dzdy
1—2ay
is a rational number whose denominator is divisible by d? = [1,2,...,7]%.

Similarly,
/ / x"y® log vy dxdy Slog xy dxdy
1—=zy

is a rational number whose denominator is divisible by d3. If r = s, then it

is clear that
x yrdxdy 1 1
N (14 = 4+...40 =
// 11—y =¢@ <+22+ iz

wy’ log zy dxdy 1 1
// = z(g(g) (1+23+ +r3))

Indeed, considering the integral

r+t Q—HdZ‘dy
/ / 1 —xy

and

we see that it is

o0 oo

1 1 > 1 B 1
(k+r+t+1)(k+s+t+1)_r—skzo k+s+t+1 k4+r+t+1

k=0

which telescopes to give the first part of the assertion fo r > s. If we
differentiate with respect to ¢ and set ¢ = 0, we can deduce the second
assertion. In case r = s, we put t = 0 to deduce the formula for {(2). If
we differentiate with respect to ¢ and set ¢t = 0, we deduce the formula
involving ((3). Beukers then looks at the integral

log xy
P, (y)dad
[ 0y ey

which by our observations above is

(Cy + DnC(3))dy?

with C,,, D,, integers. Since

logxy_/1 dz
L—ay  Jo 1-(1—ay)?’
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the integral in question is

IV =

An n-fold integration by parts with respect to x gives that the integral is

equal to .
e

A change of variable z =

W followed by an n-fold integration by
parts with respect to y gives that the integral is equal to

/// o 11__361)—(:;/_) ))n(i_w)ndl‘dydw_

It turns out that the integral is bounded by

2(vV2 - 1)"¢(3).
This can be deduced by noting that

(zyw)(1 —z)(1 —y)(1 — w)
(1= (1 = zy)w)

is bounded by (v/2 —1)% in the given region. Since the integral is non-zero,
this with the other estimates for d,, gives the final result.

28.3 Picard-Fuchs differential equations and
modular forms

Suppose we consider differential equations of the type
y™ +ai(2)y" Y 4 Fan(z)y =0

where the a;(z) are rational functions over the field of complex numbers
(say) and y is a function of z. We would like to know when the equa-
tion admits n independent algebraic solutions. The complex numbers for
which at least one of the rational functions a;(z) are not defined are called
singular points of the differential equation and form a finite set S. At any
regular point 2y, we may find a basis for the solution space of the differential
equation at zg. If we choose a closed path u beginning at zy contained in
P\ S and analytically continue these solutions along this path, we find that
when we return to zg, we will have another basis of solutions. The change
of basis matrix p(u) depends only on the homotopy class of u and thus we
may associate to each element of the fundamental group 7 (P'\S, z0), an
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element of GL(n,C). This defines a representation of w1 (P'\S, z0) and is
called the monodromy representation of the fundamental group. If we fix
another regular point z7, then the monodromy representation is conjugate
to the earlier one. Thus, the image of the monodromy representation is
well-defined in GL(n,C) upto conjugacy and this we call the monodromy
group of the differential equation.

Given our differential equation, we say that a complex number zy is a
reqular singular point (see [48], for instance) if

. - 7 i
zhﬁrrzlo(z 20)"a;(z)
exists for ¢ = 1,2, ...,n. The point oo is called a reqular singularity if

lim 2’a;
A, Pesl2)
exists and is finite for ¢ = 1,2,...,n. The differential equation is called
Fuchsian if every point of P! is either regular or regular singular. It turns
out that all the solutions of a Fuchsian equation are algebraic if and only
if the monodromy group is finite.
It might be instructive to consider an example. Let us look at
1 1
2. 1 /
Zy' +-zy +-y=0.

Y 6 Y Gy
It is readily verified that z!/2 and z'/3 are independent solutions of this
equation. Observe that both solutions are algebraic. If we take the basis of
solutions {z'/2, 2'/3} and analytically continue them around a closed path
containing zero, we get to the basis of solutions {—z'/2,e>7/321/3}, The
change of basis matrix is represented by

-1 0
0 e27ri/3 .

In this way, it is not difficulty to see that the monodromy group is generated
by this matrix which has order 6 and thus finite.
If we consider the equation

2y —zy+y=0

then the two independent solutions are {z, zlog z}, where the second solu-
tion is not algebraic. It is not hard to see that the monodromy is generated

by the matrix
1 2w
0 1
which is infinite cyclic.

An important class of Fuchsian equations is provided by the hypergeo-
metric differential equation defined by

2(z=1Dy" +[(a+b+ 1)z —cly +aby =0,
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where a, b, c are real. The Euler-Gauss hypergeometric function

F(a,b,c;2) := Z (C(li;:fz)'n 2"

n=0

where (z), = z(z+1)---(z +n —1) is a solution. The points 0,1 and oo
are regular singular points. In 1873, Schwarz determined the list of a, b, ¢
for which the monodromy group is finite and this list is called Schwarz’s
list. For instance, F(a,1,1;z) = (1 — z)~* is algebraic. The Chebycheff
polynomials defined by T;,(cos z) = cosnz are given by

F(—n,n,1/2;(1 - 2)/2).

A similar formula exists for Legendre polynomials.
In our context, the Apery recurrence relation can be translated into a
differential equation. If we set

FO) = upt"
n=0

then, we find the recurrence is equivalent to

(2% —3423 4+ 22y 4 (62% — 15322 +-32)y" + (722 — 1122+ 1)y + (2 — 5)y = 0.
It turns out that the solution space of this differential equation is spanned
by the squares of a second-order equation which is

1
(t* — 34t + t)y" + (2t — 51t + 1)y + 1t =10y =0.

We will now indicate briefly the “modular proof” of Beukers [18] He
begins with an elementary observation. Suppose that

fO(t)v fl(t)v sy fk(t)

are power series in ¢ with rational coefficients. Suppose further that the
n-th coefficient has denominator dividing d"[1,2,...,n]" for some fixed d
and r. Suppose that there are real numbers 61, ..., 0 such that

fo(t) + 01 f1(t) + - + Or fi(t)

has radius of convergence p and that infinitely many of its Taylor coefficients
are non-zero. If p > de”, then at least one of the 61, ..., 0 is irrational.
To prove this, write

oo
fl<t) == Z amt".
n=0
Let € > 0, and choose n large so that

laon + 01a1n + -+ + Oragn| < (p— €)™
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If all the 0; are rational, let D be the common denominator. Then,
Sp = Dd"[1,2,...,n]"|agn + O1a1n + - - + agnb]
is an integer smaller than
Dd"[1,2,..,n]"(p—e€)™".

By the prime number theorem [1,2,...,n] < e+ for large n and so by
the hypothesis, we see that S;, vanishes for n sufficiently large.
With this general observation in mind, we consider the following.

Proposition 145 [18] Let

F(z) = Z anq"
n=1

be such that
F(=1/Nz) = w(—izV'N)*F(2),

where w = +1. Let

an
F2) =) 554"
n=1 n
and let -
LFs)=Y 2
nS
n=1
Finally, set
(k=3)/2
h(z)=f(z) = > L(Fk—r—1)(2miz)"/rl.

r=0

Then,
h(z) — D = (=1)*Yw(—izv/N)*2h(=1/Nz)
where D = 0 if k is odd and L(F,k/2)(2miz)*/?>=1/(k/2 — 1)! if k is even.
Further, L(F,k/2) =0 if w = —1.
Proof. We apply a lemma of Hecke (as in [18]) to deduce that

k—2
f(z) = w(=1)* M (=izV/N)"2f(-1/N2) =y

=0

L(Fk—r—1
%(Qﬂ'iz)r.

3

Splitting the summation on the right hand side into sums over r < k/2—1,
r > k/2—1 and possibly r = k/2 — 1, and applying the functional equation

L(Fk—r—1)
r!

k—ar_o L(F,r+1)

= w(= 1) (v N) A (/W) 2mi) T
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we obtain the result. (J

We apply this Theorem to the following:
40F (z) = E4(2) — 36 E4(62) — 28 E4(22) + 63FE4(3z)

and
24F(z) = —5F5(2) + 30E5(62) 4+ 2F5(22) — 3E2(3z).

Here F4 and E5 are the usual Eisenstein series:

Ei(2) =1+240) o3(n)q",  q=e*™",

n=1

Ey(z)=1-—24 Z o1(n)q",
n=1

where

op(n) = _d".

dln

For a quick introduction to the notions of modular forms relevant here, we
suggest the masterly article of Zagier in [22]. Let I'1(6) be the subgroup of
the full modular group SLs(Z) defined by

{( Z Z > :a,b,c,deZ,ad—bc:l,azdzl(modG),czo(modﬁ)},

One can show that F(z) is a modular form of weight 4 on I';(6) and that
F(—1/62) = —362*F(2),
and F(ioco) = 0. Also, E(z) is a modular form of weight 2 on I';(6) and
E(—1/62) = —62°E(2).
The Dirichlet series corresponding to L(F, s) is
6(1— 627 —7.227° 4 7.327%)((s)((s — 3).

Define f(z) by
(d/dz) f(2) = (2mi)*F (2).

This is the Eichler integral associated to F' and is as in the previous propo-
sition. Then, f(ico) = 0 and an application of the proposition gives

62%(f(=1/62) = L(F,3)) = —(f(2) — L(F,3)).
Since ¢(0) = —1/2), we have
L(F,3) = 6(=1/3)¢(3)¢(0) = ¢(3)
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and therefore

62%(f(=1/62) = ¢(3)) = —(f(2) = ¢(3))
Multiplication by E(—1/62) = —622FE(z) gives
E(-1/62)(f(=1/62) — ((3)) = E(2)(f(2) — ((3))-

The field of modular functions for the group I'1(6) is generated by

/ 00
t(z) = (A(Gz)A(z))>1 ’ =q H(l _Or)I2(] BBy 12

A(32)A(22 o
where -
AGz)=q ] -q"*
n=1

is Ramanujan’s celebrated cusp form of weight 12 for the full modular
group. From this, we see that

g=t+12t2 422263 + ...

and from
E(2)=1+5¢+13¢* + -

one finds that
E(t) = 1+ 5t + 73t + 1445¢° 4 - ..

and similarly
E(t)f(t) = 6t + (351/4)t> + (62531/36)t° - - - .

By construction, one notes that E(t) has integral coefficients, and that
o0
E@)f(t) = ant"
n=0

has coefficients which are rational and a,[1,2, ...,n]? are integers.

Here, we are applying the proposition with fi(t) = E(t) and fa(t) =
E(t)f(t) and it is interesting to note that the coefficients of these two power
series are precisely the Apéry numbers and the recurrence relations now
become irrelevant. However, the recurrence relations can be derived from
the following general principle of expressing modular forms as solutions of
linear differential equations which we sketch now.

If F(2) is a modular form of weight k& and ¢(z) is a modular function,
then F'(t) (locally) satisfies a differential equation of order k + 1. This
seems to be a “folklore” theorem. There is a memoir of P. Stiller [120] that
discusses this theorem in some detail. We provide a short summary of the
ideas involved.
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Suppose for the sake of simplicity, we have a modular form f(z) of weight
2 for some subgroup I' of SLy(Z). If we consider the 3-dimensional vector
space spanned by f(z),zf(z) and 22f(z), then it is easy to see that v € T
acts on this vector space in the obvious way. For example,

az+b
cz+d

V1) = f ( ) = (2 4 A F(2) = P2 (2) + 2edzf(2) + P (2),

and it is not difficult to see that

22f(2) a>  2ab  b? 22f(2)
v- | zf(2) =| ac ad+bc bd z2f(z)
f(2) 2 2cd P f(z)

If we denote the matrix on the right hand side of the equation by
M = Sym?*(y)

then a direct verification shows that it is of determinant one. Writing
F(z2) = (22f(2),2f(2), f(2)), the above formula reads as

v.F(z) = MF(z).

Now let us consider f as a function of t. Then, one verifies that

d d
—F =M—F
5 0?) 7 E()
by checking it for each of the entries, noting that ¢ is I'-invariant. Further,
the same is true for the higher t-derivatives. If we are trying to find the
differential equation satisfied by three functions fs, f1, fo say, then we begin
by assuming it is of the form

y" 4 ax(t)y” + a1(t)y’ + ao(t)y = 0.

If we let fo(t) = f(t), f1(t) = tf(t), f(t) = t2f(t) and would like to deter-
mine the differential equation these functions satisfy, then by Cramer’s rule,
we can write down ag(t), a1 (t), az(t) in the obvious way using determinants.
Thus, we do obtain a differential equation of order 3 with coefficients given
by

EEAN N

fl fl 1 sy fl 1 1
/ " / " n

2 fa [ fo 15

This differential equation has coefficients in terms of our solutions fy, f1, fo.
However, the action of v on them is the same as multiplying by the symmet-
ric square matrix M of v having determinant 1. Thus, the coefficients are
I-invariant meromorphic functions and therefore must be algebraic func-
tions of . Hence we are done. This equation is called the Picard-Fuchs
differential equation associated to X (T").
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In our case, if we take the weight 2 form

1(22)"n(32)"
1(2)°n(62)°

where n denotes the Dedekind n-function, then ¢ is a modular form of
weight 2 for I'1(6), equal to the function E(z) in Beukers’ proof. If we
treat this as a function of the modular function ¢(z), we can derive a third-
order differential equation. From this differential equation, we can recover
the recursion defining the integral Apery numbers. The integrality is a
consequence of the observation that both g(z) as well as ¢(z) have integral
g-expansions and that ¢(z) is normalized (i.e. starts with ¢).

On the other hand, the recursion and divisibility properties of the ratio-
nal Apery numbers is more involved as it is related to F'(z) which satisfies a
differential equation of order 5. However, as suggested by Beukers himself,
it is convenient to work, not with F'(z), but its associated Eichler integral
(which we called f in the proof of Beukers) and work with f(z)g(z). Ex-
pressing this as function of ¢(z), we can recover the recurrence formula for
the rational Apery numbers as well as the divisibility properties enjoyed by
their denominators. We recommend the article of Zagier in [22] for a more
elaborate account.

The theme of expressing modular forms as functions of modular func-
tions and thereby realizing them as solutions of linear differential equations
of finite order constitutes a venerable theme. The imprints of this can be
traced in the works of past masters like Gauss, Fricke, Klein, Poincare,
Ramanujan etc. As we have seen before, the fact that the C-algebra gener-
ated by the Eisenstein series Fo, F4 and Ejg is closed under differentiation
constitutes an essential ingredient in the seminal work of Nesterenko.

Finally, it is not clear if any of these proofs of irrationality of ((3) can
yield irrationality of other odd zeta values like that of {(5). However, we
do have the following remarkable theorem of Rivoal ([102], [103]) which is
the most general result in this context.

9(2) =

Theorem 146 Given any € > 0, there exists an integer N = N(e) such
that for all n > N, the dimension of the Q-vector space generated by the
numbers

1, ¢(3), -+ ,¢((2n—1), ((2n+1)

exceeds
1—c¢

—1 .
1+ log2 o

In particular, Rivoal proved that infinitely many odd zeta values are
irrational. In respect of individual odd zeta values, Rivoal [104] himself
showed that at least one of the nine numbers

¢(5) ¢(7) ... ¢(21)
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is irrational. This was sharpened by Zudilin [137] who showed that at least
one among the four numbers

¢(5) ¢(7) <€(9) ¢(11)

is irrational. Thus the irrationality, let alone transcendence, of odd zeta
values seems to be a very hard question.

Finally, in this mysterious modular-transcendence conundrom, one can
ask about nature of the values taken by the L-functions associated to mod-
ular forms. Indeed, Kohnen [67] (see also [68], [54]) has made general
conjectures regarding special values of L-series attached to modular forms
of weight 2k for the full modular group. These conjectures when applied to
classical Eisenstein series imply the transcendence of ((2k + 1)/72*+1 for
all k> 1. But this is a different journey which we do not undertake here.



204 Periods, multiple zeta functions and ((3)




Bibliography

1]

[10]

[11]

[12]

[13]

W. W Adams, On the algebraic independence of certain Liouville
numbers, J. Pure Appl. Algebra 13 (1978), no. 1, 41-47.

S.D. Adhikari, N. Saradha, T. N. Shorey and R. Tijdeman, Tran-
scendental infinite sums, Indag. Math. (N.S.) 12 (2001), no. 1, 1-14.

R. Apéry, Irrationalité de ((2) et ((3), Astérisque 61 (1979), 11-13.

T. Apostol, Introduction to analytic number theory, Undergraduate
Texts in Mathematics, Springer-Verlag.

J. Ax, On the units of an algebraic number field, Illinois J. Math. 9
(1965), 584-589.

J. Ax, On Schanuel’s conjectures, Ann. of Math 93 (1971), no. 2,
252-268.

A. Baker, Linear forms in the logarithms of algebraic mumbers,
Mathematika 13 (1966), 204-216;

A. Baker, Transcendental Number Theory, Cambridge University
Press, 1975.

A. Baker, B. Birch and E. Wirsing, On a problem of Chowla, J.
Number Theory 5 (1973), 224-236.

A. Baker and G. Wiistholz, Logarithmic forms and group varieties,
J. Reine Angew. Math. 442 (1993), 19-62.

A. Baker and G. Wiistholz, Logarithmic forms and Diophantine
geometry, New Mathematical Monographs, Cambridge University
Press, Cambridge, 2007.

R. Balasubramanian and S. Gun, On zeros of quasi-modular forms,
J. Number Theory 132 (2012), no. 10, 2228-2241.

K. Barré-Sirieix, G. Diaz, F. Gramain and G. Philibert, Une preuve
de la conjecture de Mahler-Manin, Invent. Math. 124 (1996), 1-9.



206 BIBLIOGRAPHY

[14] C. Bertolin, Périodes de I-motifs et transcendence, J. Number The-
ory 97 (2002), no. 2, 204-221.

[15] D. Bertrand, Séries d’Fisenstein et transcendance, Bull. Soc. Math.
France 104 (1976), no. 3, 309-321.

[16] D. Bertrand and D. Masser, Linear forms in Elliptic Integrals, In-
vent. Math. 58 (1980), 283-288.

[17] F. Beukers, A note on the irrationality of ((2) and {(3), Bulletin of
the London Math. Society 11 (1979), 268-272.

[18] F. Beukers, Irrationality proofs using modular forms, Astérisque
147/148 (1987), 271-283.

[19] F. Brown, Mized Tate motives over Z, Ann. of Math. 175 (2012),
no. 2, 949-976

[20) W. D. Brownawell The algebraic independence of certain numbers
related by the exponential function, J. Number Theory 6 (1974), 22-
31.

[21] A. Brumer On the units of algebraic number fields, Mathematika,
14 (1967), 121-124.

[22] J. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of
modular forms, Universitext. Springer-Verlag.

[23] P. Bundschuh, Zwei Bemerkungen tber transzendente Zahlen,
Monatsh. Math. 88 (1979), no. 4, 293-304.

[24] P. Cartier, Fonctions polylogarithmes, nombres polyzetas et groupes
pro-unipotents, Séminaire Bourbaki, Vol. 2000/2001, Astérisque 282
(2002), Exp. No. 885, 137-173.

[25] K. Chandrasekharan, Elliptic functions, Grundlehren der Mathema-
tischen Wissenschaften 281, Springer-Verlag, Berlin.

[26] S. Chowla and A. Selberg, On Epstein’s zeta-function, J. Reine
Angew. Math. 227 (1967), 86-110.

[27] S. Chowla, A special infinite series, Norske Vid. Selsk. Forth.
(Trondheim), 37 (1964), 85-87. (See also Collected Papers, Vol. 3,
p. 1048-1050.)

[28] S. Chowla, The nonezistence of nontrivial linear relations between
roots of a certain irreducible equation, J. Number Theory 2 (1970),
120-123.



BIBLIOGRAPHY 207

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[39]

[40]

[41]

[42]

[43]

G. V. Chudnovsky, Algebraic independence of constants connected
with the exponential and the elliptic functions, Dokl. Akad. Nauk
Ukrain. SSR Ser. A (1976), no. 8, 698-701.

G. V. Chudnovsky, Contributions to the theory of transcendental
numbers, Mathematical Surveys and Monographs, 19, (1974), Amer-
ican Mathematical Society.

P. Colmez, Résidu en s=1 des fonctions zeta p-adiques, Invent.
Math. 91 (1988), No 2, 371-389.

H. Davenport, Multiplicative Number Theory, 2nd Edition, 74,
Springer-Verlag.

P. Deligne, J.S. Milne, A. Ogus, K. Shih, Hodge cycles, motives, and
Shimura varieties, Lecture notes in Mathematics, 900, Springer-
Verlag, Berlin, New York, 1982.

P. Deligne and A. Goncharov, Groupes fondamentaux motiviques de
Tate mizte, Ann. Sci. Ec. Norm. Sup. 38 (2005), no. 4, 1-56.

P. Deligne, Valeurs de fonctions L et periodes d’integrales, Proc.
Symp. Pure Math. 33, (1979), no 2, 313-346.

P. Deligne, Multizétas, d’aprés Francis Brown, Séminaire Bourbaki,

2011-2012, Exp. 1048.

F. Diamond and J. Shurman, A first course in modular forms. Grad-
uate Texts in Mathematics, 228. Springer-Verlag,

G. Diaz, Grands degrés de transcendance pour des familles
d’exponentielles, C.R. Acad. Sci. Paris. Sér. I. Math. 305 (1987),
no. 5, 159-162.

G. Diaz, La conjecture des quatre exponentielles et les conjectures de
D. Bertrand sur la fonction modulaire, J. Théor. Nombres Bordeaux
9 (1997), no. 1, 229-245.

A. El Basraoui and A. Sebbar, Zeros of the FEisenstein series Es,
Proc. Amer. Math. Soc. 138 (2010), no. 7, 2289-2299.

A. O. Gel'fond, Sur le septiéme probléeme de Hilbert, Izv. Akad.
Nauk. SSSR 7 (1934), 623-630.

A. O. Gel'fond, On algebraic independence of algebraic powers of
algebraic numbers, Dokl. Akad. Nauk. SSSR 64 (1949), 277-280.

A. Ghosh and P. Sarnak, Real zeros of holomorphic Hecke cusp
forms, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 2, 465-487.



208 BIBLIOGRAPHY
[44] D. Goldfeld, The class number of quadratic fields and the conjectures
of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa Cl. Sci.

3 (1976), no. 4, 624-663.

[45] D. Goldfeld, The conjectures of Birch and Swinnerton-Dyer and the
class numbers of quadratic fields, Astérisque (1977), No. 41-42, 219-
227.

[46] D. Goldfeld, Gauss’s class number problem for imaginary quadratic
fields, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 1, 23-37.

[47] P. Grinspan, Measures of simultaneous approximation for quasi-
periods of abelian varieties, J.Number Theory 94 (1) (2002), 136-
176.

[48] P. A. Griffiths, Periods of integrals on algebraic manifolds: Summary
of main results and discussion of open problems, Bull. Amer. Math.
Soc. 76 (1970), 228-296.

[49] B. H. Gross, On an identity of Chowla and Selberg, J. Number The-
ory 11 (1979), 344-348

[50] B. Gross and D. Zagier, Heegner points and derivatives of L-series,
Invent. Math. 84 (1986), no. 2, 225320.

[51] S. Gun, Transcendental zeros of certain modular forms, Int. J. Num-
ber Theory 2 (2006), no. 4, 549-553.

[52] S. Gun, M. Ram Murty and P. Rath, Transcendental nature of spe-
cial values of L-functions, Canad. J. Math. 63 (2011), 136-152.

[53] S. Gun, M. Ram Murty and P. Rath, Algebraic independence of
values of modular forms. Int. J. Number Theory 7 (2011), no. 4,
1065-1074,

[54] S. Gun, M. Ram Murty and P. Rath, Transcendental values of cer-
tain Fichler integrals, Bull. Lond. Math. Soc. 43 (2011), no. 5, 939-
952.

[55] S. Gun, M. Ram Murty and P. Rath, On a conjecture of Chowla and
Milnor, Canad. J. Math 63 (2011), no. 6, 1328-1344.

[56] S. Gun, M. Ram Murty and P Rath, A note on special values of
L-functions, To appear in Proc. Amer. Math. Society.

[57] S. Gun, M. Ram Murty and P Rath, Linear Independence of Hur-

witz zeta values and a theorem of Baker-Birch- Wirsing over number
fields, Acta Arith. 155 (2012), no. 3, 297-309.



BIBLIOGRAPHY 209

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

R. C. Gunning and H. Rossi, Analytic functions of several complex
variables. AMS Chelsea Publishing, Providence.

R. Holowinsky, Sieving for mass equidistribution, Ann. of Math. 172
(2010), no. 2, 1499-1516.

R. Holowinsky and K. Soundararajan, Mass equidistribution for
Hecke eigenforms, Ann. of Math. 172 (2010), no. 2, 1517-1528.

D. Husemoller, FElliptic curves, Graduate Texts in Mathematics,
111, Springer-Verlag.

Y. Ihara, V. Kumar Murty, M. Shimura, On the logarithmic deriva-
tives of Dirichlet L-functions at s = 1, Acta Arith.137 (2009), no.
3, 253-276.

M. Kaneko and D. Zagier, A generalized Jacobi theta function and
quasimodular forms, The Moduli Space of Curves, Progr. Math. 129
(1995), 165-172.

S. Kanemitsu and H. Tsukada, Vistas of special functions, World
Scientific Publishing Co. Pte. Ltd.

N. Kanou, Transcendency of zeros of Fisenstein series, Proc. Japan
Acad. Ser. A Math. Sci. 76 (2000), no 5, 51-54.

N. Koblitz, Introduction to elliptic curves and modular forms, Grad-
uate Texts in Mathematics, 97, Springer.

W. Kohnen, Transcendence conjectures about periods of modular
forms and rational structures on spaces of modular forms, Proc.
Indian Acad. Sci. (Math. Sci.), 99 (1989), No. 3, 231-233.

W. Kohnen and D. Zagier, Modular forms with rational periods,
Modular forms, edited by R. Rankin, Ellis Horwood Ser. Math. Appl.
Statist. Oper. Res., Horwood, Chichester, 1984, pp. 197-249.

W. Kohnen, Transcendence of zeros of Eisenstein series and other
modular functions, Comment. Math. Univ. St. Pauli 52 (2003), no
1, 55-57.

M. Kontsevich and D. Zagier, Periods, Mathematics Unlimited-2001
and Beyond, Springer, (2001) 771-808.

S. Lang, Introduction to modular forms. With appendixes by D.
Zagier and Walter Feit. Corrected reprint of the 1976 original, 222,
Springer Verlag.

S. Lang, Algebraic number theory, Graduate Texts in Mathematics,
110, Springer.



210

BIBLIOGRAPHY

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

S. Lang, FElliptic functions, Second edition. Graduate Texts in Math-
ematics, 112, Springer.

S. Lang, Algebraic values of Meromorphic functions I, Topology 3
(1965), 183-191.

S. Lang, Introduction to transcendental numbers, AddisonWesley
Publishing Co., (1966).

K. Mahler, Remarks on a paper by W. Schwarz, J. Number Theory
1 (1969), 512-521.

Y. Manin, Cyclotomic fields and modular curves, Russ. Math. Sur-
veys 26 (1971), no. 6, 7-78.

D. Masser, Elliptic functions and transcendence, Lecture Notes in
Mathematics, 437, Springer-Verlag, 1975.

M. Ram Murty, Problems in Analytic Number Theory, Second Edi-
tion, Graduate Texts in Mathematics, 206, Readings in Mathemat-
ics, Springer, New York, 2008.

M. Ram Murty, An introduction to Artin L-functions, J. Ramanujan
Math. Soc., 16 (2001), no. 3, 261-307.

M. Ram Murty, Some remarks on a problem of Chowla, Ann. Sci.
Math. Québec 35 (2011), no. 2, 229-237.

M. Ram Murty and V. Kumar Murty, Transcendental values of class
group L-functions, Math. Ann. 351 (2011), no. 4, 835-855.

M. Ram Murty and V. Kumar Murty, A problem of Chowla revisited,
J. Number Theory 131 (2011), no. 9, 1723-1733.

M. Ram Murty and V. Kumar Murty, Transcendental values of class
group L-functions-II, Proc. Amer. Math. Soc. 140 (2012), no. 9,
3041-3047.

M. Ram Murty and N. Saradha, Transcendental values of the
digamma function, J. Number Theory 125 (2007), no. 2, 298-318.

M. Ram Murty and N. Saradha, Euler-Lehmer constants and a con-
jecture of Erdos, J. Number Theory 130 (2010), no. 12, 2671-2682.

M. Ram Murty and N. Saradha, Special values of the polygamma
functions, Int. J. Number Theory 5, No. 2, (2009), 257-270.

M. Ram Murty and C. J. Weatherby, On the transcendence of certain
infinite series, Int. J. Number Theory 7 (2011), no. 2, 323-339.



BIBLIOGRAPHY 211

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

100]

[101]

[102]

Some remarks on a problem of Chowla, Ann. Sci. Math. Québec 35
(2011), no. 2, 229-237.

Y. V. Nesterenko, Modular functions and transcendence, Math. Sb.
187 (1996), no.9, 65-96.

Yu. V. Nesterenko, Some remarks on ((3), Mathematical Notes, 59
(1996), 625-636.

Y. V. Nesterenko, P. Philippon (Eds), Introduction to algebraic in-
dependence theory, Lecture Notes in Math., 1752, Springer, Berlin,
2001.

Y.V. Nesterenko, Algebraic independence for values of Ramanujan
functions, Introduction to algebraic independence theory, edited by
Y.V. Nesterenko and P. Philippon, Lecture Notes in Mathematics,
1752, (2001), pp. 27-46.

J. Neukirch Algebraic number theory, 322. Springer-Verlag, Berlin,
1999.

J. Oesterlé, Nombres de classes des corps quadratiques imaginaires,
Seminar Bourbaki, Vol. 1983/84. Astérisque No. 121-122 (1985),
309-323.

P. Philippon, Variétés abéliennes et indépendance algébrique. II. Un
analogue abélien du théoréme de Lindemann-Weierstrass, Invent.
Math. 72 (1983), no. 3, 389-405.

P. Philippon, Critéres pour I'independance algébrique, Inst. Hautes
Etudes Sci. Publ. Math. (1986), no. 64, 5-52.

G. Prasad and A. Rapinchuk, Weakly commensurable arithmetic
groups and isospectral locally symmetric spaces, Inst. Hautes Etudes
Sci. Publ. Math. (2009), no. 109, 113-184.

K. Ramachandra, Some applications of Kronecker’s limit formulas,
Ann. of Math 80 (1964), no. 2, 104-148.

K. Ramachandra, On the units of cyclotomic fields, Acta Arith 12
(1966/67), 165-173.

F. K. C. Rankin and H. P. F. Swinnerton-Dyer, On the zeros of
Fisenstein series, Bull. London Math. Soc. 2 (1970), 169-170.

T. Rivoal, La fonction zeta de Riemann prend une infinité de valeurs
irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris Sér I Math.
331 (2000), no. 4, 267-270.



212

BIBLIOGRAPHY

[103]

[104]

[105]

[106]

[107)
[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

K. Ball and T. Rivoal, Irrationalité dune infinité de valeurs de la
fonction zeta aux entiers impairs, Invent. Math. 146 (2001), no. 1,
193-207.

T. Rivoal, Irrationalité d’au moins un des neuf nombres
€(5),¢(7),---,¢(21), Acta Arith. 103 (2002), no. 2, 157-167.

D. Roy, An arithmetic criterion for the values of the exponential
function, Acta Arith. 97 (2001), no. 2, 183-194.

Z. Rudnick, On the asymptotic distribution of zeros of modular
forms, Int. Math. Res. Not. (2005), no. 34, 2059-2074.

J.-P. Serre, A course in arithmetic, 7, Springer-Verlag.

T. Schneider, Arithmetische Untersuchungen elliptischer Integrale,
Math Ann. 113 (1937), no. 1, 1-13.

E. Scourfield, On ideals free of large prime factors, J. Théorie des
nombres Bordeaux 16 (2004), no. 3, 733-772.

G. Shimura, An introduction to the arithmetic theory of automorphic
functions, Princeton University Press, 1994.

G. Shimura, FElementary Dirichlet series and modular forms,
Springer Monographs in Mathematics. Springer, New York, 2007.

C. L. Siegel, Transcendental Numbers, Annals of Math. Studies, no.
16, Princeton University Press, Princeton, New Jersey, 1949.

C. L. Siegel, Advanced analytic number theory, Second edition, Tata
Institute of Fundamental Research Studies in Mathematics, 9, 1980.

J. Silverman, The arithmetic of elliptic curves, Second edition. Grad-
uate Texts in Mathematics, 106.

J. Silverman, Advanced topics in the arithmetic of elliptic curves,
Graduate Texts in Mathematics, 151.

H. M. Stark, On complezx quadratic fields with class number equal to
one, Trans. Amer. Math. Soc. 122 (1966), 112-119.

H. M. Stark, A complete determination of the complex quadratic
fields of class-number one, Michigan Math. J. 14 (1967), 1-27.

H. M. Stark, L-functions at s = 1. II. Artin L-functions with rational
characters, Advances in Math 17 (1975), no. 1, 60-92.

K. Soundararajan, Quantum unique ergodicity for SLo(Z)\H, Ann.
of Math. 172 (2010), no. 2, 1529-1538.



BIBLIOGRAPHY 213

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

P. Stiller, Special values of Dirichlet series, monodromy and the pe-
riods of automorphic forms, Memoirs of the American Mathematical
Society, 49 (1984), no. 299.

T. Terasoma, Mized Tate motives and multiple zeta values, Invent.
Math. 149 (2002), no. 2, 339-369.

A. Van der Poorten, On the arithmetic nature of definite integrals
of rational functions, Proc. Amer. Math. Soc. 29 (1971), 451-456.

A. van der Poorten, A proof that Euler missed ... Apéry’s proof of
the irrationality of ((3), Math. Intelligencer, 1 (1978/79), no. 4,
195-203.

K.G. Vasilev, On the algebraic independence of the periods of abelian
integrals, Mat. Zametki 60 (1996), no. 5, 681-691.

M. Waldschmidt, Open Diophantine Problems, Mosc. Math. J. 4
(2004), no. 1, 245-305.

M. Waldschmidt, Diophantine approzimation on linear algebraic
groups, 326, Springer Verlag.

M. Waldschmidt, Transcendence of periods: the state of the art, Pure
Appl. Math. Q. 2 (2006), no. 2, 435-463.

M. Waldschmidt, Elliptic functions and transcendence, Surveys in
number theory, Dev. Math. 17 (2008), 143-188.

M.Waldschmidt, Solution du huitiéme probleme de Schneider, J.
Number Theory 5 (1973), 191-202.

L. Washington, Introduction to Cyclotomic Fields, 83, Springer-
Verlag.

A. Weil, Elliptic functions according to FEisenstein and Kronecker,
Springer-Verlag, Berlin, 1999.

E. T. Whittaker and G. N. Watson, A course of modern analysis,
Fourth edition. Cambridge University Press,

G. Wiistholz, Uber das Abelsche Analogon des Lindemannschen
Satzes, Invent. Math. 72 (1983), no. 3, 363-388.

D. Zagier, Values of zeta functions and their applications, First Eu-
ropean Congress of Mathematics, vol. 2 (1992), 497-512.

D.  Zagier, Evaluation  of the multiple zeta  values
€(2,--+,2,3,2,---,2), Ann. of Math. 175 (2012), no. 2, 977-
1000.



214 BIBLIOGRAPHY

[136] B. Zilber, Exponential sums equations and the Schanuel conjecture,
J. London Math. Soc. (2). 65 (2002), no. 1, 27-44.

[137] V. V. Zudilin, One of the numbers ((5),¢(7),(9),{(11) is irrational,
56 (2001), no. 4(340), 149-150; translation in Russian Math. Surveys
56 (2001), no. 4, T74-776.



Index

Artin L-function, 120

Baker period, 117

Baker’s theorem, 99, 105, 107, 118,
130, 135, 156

Baker, A., 99, 107, 109, 125

Bernoulli numbers, 72

Bertrand, D., 88, 99

binary quadratic forms, 110

Birch and Swinnerton-Dyer conjec-

ture, 125
Birch, B., 125
Brown, F.; 190

Bundschuh, P., 143

Chowla, S., 125, 157

Chowla-Selberg formula, 84, 170

Chudnovsky’s theorem, 184

Chudnovsky, C., 140

Chudnovsky, G., 182

class group L-functions, 161

class number, 112

class number formula, 120

class number one, 109

CM points, 78, 184

Colmez, P., 120

complete elliptic integral of the first
kind, 85

complete elliptic integral of the sec-
ond kind, 85

complex multiplication, 81, 91

conjugate fields, 19

constructible number, 17

cotangent expansion, 73

Dedekind determinant, 133
Dedekind zeta function, 119

Deligne, P., 190

derivation, 37

Diaz, F., 140

Dirichlet L-functions, 155

Dirichlet series, 108, 125

Dirichlet’s class number formula, 111
division points, 56

Eisenstein series, 45, 84, 87, 183

ellipse, 65

elliptic curves, 48

elliptic functions, 45, 53

elliptic integral of the first kind, 85

elliptic integral of the second kind,
85

elliptic integrals, 63, 83, 93

estimates for derivatives, 37

Euler’s constant, 169

Euler, L., 72

Feldman, N.I., 107

four exponentials conjecture, 34
fundamental domain, 45, 72, 184
fundamental parallelogram, 45
fundamental theorem of algebra, 24
fundamental unit, 111

Gamma function, 118

Gauss, C.F., 18

Gelfond’s conjecture, 140

Gelfond, A.O., 41, 139

Gelfond-Schneider conjecture, 141

Gelfond-Schneider theorem, 43, 99,
105

Genus character, 168

Goldfeld, D., 109, 112

Goncharov, A., 190



216

INDEX

Gross, B.H., 112
Gun, S., 183

Hadamard factorization, 126
height of an algebraic number, 30
Hermite’s theorem, 11, 21
Hermite, C., 11
Hermite-Lindemann theorem, 43, 93
Hilbert’s seventh problem, 41, 139
Hoffman, M., 190

Holowinsky, R., 184

homothety, 76

Hurwitz zeta function, 126
Hurwitz, A., 126

hyperbolic measure, 184
hyperbolic triangle group, 97
hypergeometric series, 93

ideal classes, 110
Thara, Y., 170
isogeny, 76

j-function, 79, 182
Jensen’s inequality, 25

Kohnen, W., 183
Kontsevich, M., 118
Kronecker’s limit formula, 110

Landau, E., 23

Lang, S., 41, 100

lattice of periods, 45

Legendre normal form, 94

Legendre relation, 59

Leopoldt, 120

Lindemann’s theorem, 15

Lindemann, F., 15, 19

Lindemann-Weierstrass theorem, 19,
99, 105, 115, 142

linear forms in logarithms, 107

Liouville’s theorem, 27, 48

Mahler-Manin conjecture, 182
Masser, D., 99

maximum modulus principle, 23
Minkowski unit, 121

modular forms, 110, 181
modular function, 69
modular invariant, 69
Mordell-Weil rank, 112
Murty, K., 170

Murty, M.R., 139

Nesterenko’s conjecture, 185
Nesterenko’s theorem, 89, 153, 182
Nesterenko, Yu., 88, 116, 181
Norm, 33

order, 78
order of an entire function, 26

Parseval’s formula, 24
period, 118

period lattice, 45, 75
periods, 59

periods of elliptic curve, 55
Philippon, P., 140

Picard group, 81

primitive element, 19

quasi-modular forms, 185
quasi-periods, 50, 59

Ramachandra, K., 155, 158
Ramanujan’s cusp form, 183
Ramanujan, S., 88
regulator, 120

Riemann (-function, 72
Riemann sphere, 75

Schanuel’s conjecture, 21, 115, 118,
165

Schanuel, S., 21, 115

Schneider’s conjecture, 140

Schneider’s theorem, 84, 87

Schneider, T., 41, 80, 139, 181

Schneider-Lang theorem, 41, 54, 66,
87, 100

Schwarz’s lemma, 25

Shimura, M., 170

Siegel’s lemma, 29, 32, 34

Siegel, C.L., 29



INDEX

217

six exponentials theorem, 33
Soundararajan, K., 184
Stark’s conjecture, 121
Stark, H.M., 109

strict order, 41

uniformization theorem, 69
unit group, 120

Waldschmidt, M., 99

Weak Schanuel’s conjecture, 115

Weatherby, C., 139

Weierstrass o-function, 49

Weierstrass g-function, 45, 53, 89,
90

Weierstrass (-function, 49, 91

Weierstrass, K., 19

Wirsing, E., 125

Wustholz, G., 107

Zagier, D., 112, 118



