‘éa.nadz'a‘.n Mathematical Society

Conference Proceedings
Volume 7 (1987)

A VARIANT OF THE BOMBIERI-VINOGRADOV THEOREM
1 2
M. Ram Murty™ and V. Kumar Murty

INTRODUCTION. Let a,q, be positive integers with 1 < a < q, (a,q) = 1.
Denote by 7m(x,q,a) the number of primes p < x, satisfying p = a (mod q). We
know from the classical result of Dirichlet [3, ch. 22] that

T(x,q,a) i T(x)

$(q)

where ¢ is Euler's totient function. Estimates of the size of the error term
1
n(x,q,a) - sy m(x)

are of great importance in applications. It is known that the Riemann

Hypothesis for all Dirichlet L-functions implies that
i

T(x,q,8) = E’é‘) 7(x) + 0(x° (log qx))

The celebrated theorem of Bombleri [1] and Vinogradov [30] shows uncondition-
ally that this estimate holds on the average. It states that for any A > 0,
there 1s a B = B(A) > 0 so that

X o

(0.1) J max  max |n(y.q,a) —E(iqyncy)} < g
og X

q2Q y<x (a,q)=1
1
where Q = xz (log x)_B and we write f « g to mean |f/g| is bounded.

The purpose of this paper is to prove a variant of this theorem where a
non-abelian splitting condition is introduced. More precisely, let K be a
number field. Suppose that it is Galois over Q with group G = Gal(K/Q). Let
C be a conjugacy class in G. With a and q as above, denote by ‘rrc(x,q,a) the
number of primes p < x which are unramified in K, which satisfy (p,K/Q) =.C,
and p 5 a (modq). (Here, (p,K/Q@) is the Artin symbol of p in G). From the
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Chebotarev density theorem [12], we know that
T.(x,q,a) " §(C,q,a) m(x)

for some density 6(C,q,a) > 0. Let Cq denote a primitive g-th root of unity.
If K and Q(cq) are disjoint, then

0.2) §(Cyq,a) = JI% S

(For any finite set S, we write fS] for its cardinality). Our aim is to

prove, for any A > 0, an estimate of the form

(0.3) i max max Iﬂc(y,q,a) - §(C,q,a) m(y)|<< X i
q5Q (a,q)=1 y<x (log x)
with @ = xm_E y €> 0 and the sum is over q such that K N Q(Cq) = Q. Here,

@ will depend on G and C and satisfy

2 1
&Zmin(—l-c—i—,i)

For a precise description of a, see §7. (We remark that with more care, we
can even take Q = xa(log x)_B, B = B(A) > 0). If we assume (AC) that the
L-functions attached to all abelian twists of the non-trivial irreducible
characters of G are entire, then we can prove (0.3) with a larger value of o .
Indeed, set '

§= max [x(1) - 2|
X#1

where the maximum is over the irreducible characters of G. Then, assuming
(AC), we can take o = min(%-’%). In particular, if 6 < 2, we have (0.3)
with a = % - The groups G which satisfy § < 2 can be classified (using
results of the type [5, theorem 24.6]). e

Our motivation for studying estimates of the form (0.3) comes from the
observation that non-abelian analogues of the Bombieri-Vinagfadov theorem
would have interesting arithmetical consequences. For example, let ﬂq(x)
denote the number of primes p < x which split completely in the Kummer
extension Lq = Q(cq, 3/5‘).' It is well-known [19] that an estimate of the
form
X

m(x) | << 3
(log x)

Ioim (x) -

W Y
1<Q q q(q-l)_

(with Q about xlj

2 } would suffice to imply Artin's primitive root
conjecture.
Let f be a cusp form of weight k > 2 for the congruence subgroup PO(N),

N > 1. Suppose that f is an eigenform for the Hecke operators Tp'
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ezﬂinz for the Fourier expansions at 1«.

{p 1 N, p prime). Write f = z
n>l

For each prime £, let ﬁz(x)'denota the number of primes p < x satisfying

a =0 (mod%). It is well-known [20] that there is a Galois extension K,/@

such that the condition ap = 0 (mod &) 1s equivalent to the condition that p

has a certain splitting type in K . An estimatelof the form

I omp@ - 2um| e« —F
£<q 2 L (]Log:c)2

with Q a power of exp((log x)/(log log x)) would suffice to imply the hormal

order (and even the statistical distribution) of tﬁe number of prime divisors
of a_ and a . It would also imply lower bounds for ap valid for a ses of p ﬁf
density 1 (cf.[20],[21]). )

The need for am estimate of the precise form (0.3) arose in the problem
of determining which rings of S-integers in a number field K possess a
Euclidean algorithm. The connection between the two problems is explained in
detail in [9]. For other variants of the Bombieri-Vinogradov theorem, see
Huxley [10], Wilson [32] and Motohashi [17]. '

Besides the uriginai argument of Bombieri [1], there are proofs of (0.1)
given by Gallagher [6] and Vaughan [31]. Moreover, much work has been done
recently by Bombieri, Iwaniec and Friedlander [3] to prove (0.1l) with a
larger value of Q. Our approach to (0.3) will be an adaptation of the methods
of Gallagher [6] and'Ramachandra [23]. The paper is self-contained, and in
general, we attempt to make expliéi: the dependence of constants on the number
field K. The first three sections contain various preliminaries. The proof
of the main theorem is given in sections 4-6, and the last section contains an
application to the problem of the least prime whose Artin symbol lies in a

given conjugacy class.

Table of Contents

1. Character sums

2. Phragmén - Lindelof theorem

3. Zero-free regions

4. Gallagher's method

5. Estimates for mean squares

6. Estimates for the initial range
7. Completion of the proof

B. Primes in Progfessiona

‘Notation If K is a number field, oy denotes the degree [K: @] of K/Q and dK

denotes the absolute value of the discriminant of K/g.
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1. Character Sums ’ "

1.1 Let G be a finite group and C a conjugacy elass of G. Let GC : 6 + {0,1}

denote the characteristic function of C. In terms of characters, we have

= C n
8= 1 Litepn

where 8¢ is any element of C, and the sum is over all irreducible characters
n of G. Let H be any subgroup of G such that HN C# ¢. Take g, € H N C and
let C, ‘denote the conjugacy class of Bg in H. Then

H
8= Inds 6
¢™? T Oy

where 60 :H + {0,1} is the characteristic function of C, and

H
A= el - 8|/ |G| - ICHI' Now, let X be any character of G. Then by

L]

Mackey's induction theorem [ 24, p. 571 we have

' - 5 i
(2.1.1) , S, 8 X =\ Ind, (6CH 8 x|y

1.2 Suppose G = Gal(L/F) with L 2 F, where L, F are number fields. Let k be

a non-negative integer, and let £ be a class function. Define

(1.2.1) wk(LIF. E,x)= %‘.—- ) (log Nv) (10g_Lm)k E(U:)

Nvm <x Nv
where the au.m_:f.s over powers of places v of F unramified in L, cr.“r denotes a
Frobenius element at v and N denotes HomF /0 It is convenient to include
ramified primes also in this sum. This is done by extending £ in the usual
way. Let v be a place of F and w a place of L above v. Let Dw and IH
denote the decomposition and inertia group at w (respectively). Then

g €D /I . We set
w W oW &
m, _ 1
(o )= Ty LE(e)

wvhere the sum is over all elements g € Dw whose image in leIw is 02 . A
different cholce of w conjugates Dw and I“ and thus leaves the above sum
unchanged. With this, we let a)'k(LIF, £, x) denote the sum in (1.2.1), now
taken over all vm, v a place of F and N < x. We have

Qogm)**1 1 7
(1.2.2) §W/FE = ¥ (L/FE x) + O(l|E|-=BF——{jgTload; * mpx"})

where ||El|= sup [E(g)| . The proof is almost the same as in
gEG
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serre [ 25, Proposition 7] and is omitted.

1.3 We can write the class function £ as a linear combination
E=J a,n

wlhiere N ranges over the irreducible characters of G and an € €. Let L(s,n)
denote the Artin L-series attached ton . Then
o e 1 L' x°
U (L/E, E ,x) -2-,-,;2 2, | T s
(2)

where the integration is on the line Re(s) = 2.

1.4 Let K be a Galois extension of @, and l1<a, q€ Z,a <gq, (a,q) = 1.
We use the above observations with L~ K(l;q). where Cq is a primitive q-th
root of 1, and F = Q. Suppose that K N Q(cq) = Q. Then we know that

G = Gal(K(i;q)/Q) has a splitting

G v Gal(K/Q) x Gal(Q(Cq)IQ) ¢

Every element g of G can thus be writtenas (gl i 82) in an obvicus way.
Every conjugacy class of G is of the form (Cl § Cz) where C, is a class of
Gal(K/@) and l'}2 a class of Gal(Q(Cq)/Q). Fix an identification
Gal(Q(Eq)IQ) ~ (Elq)x . We use the same letter to denote the image of a
under Z + Z/q. Let 6 :G + {0,1} be-déefined by 6§ (g) = {1 if g, = a .
a,q ) a,q 2
0 otherwise

Fix a conjugacy class C in Gal(K/Q) and let £ = £(C,a,q) = GC 8 63 q
?
Thus £ is the characteristic function of the class (C,{al). Explicitly, we

have k

B RED/QED=Fr ] (logp) (log())
Pl Sx B

p" = alq)
o €c¢

Our aim is to show that given A > 0, there is a suitable choice of Ql so that

x

sy I max  max [y (K(Z )/Q, £(C,a,q),y) - 6(C,a,q)y| << =
1 (log x)

9£Q; (a,0)=1y<x

The prime on the summation indicates that we range only over those q

satisfying K N Q(Cq) = Q.




248 M. RAM MURTY and V. KUMAR MURTY

1,5 We transform the sum of (1.4.1) in several ways. The first observation
is that it suffices to prove an estimate with 1}10 replaced by wk for some
large k. We sketch the argument as it is similar to Gallagher [6]. Write
u‘Jk(x) for ll;k(K(Cq)lQ, E(C,a,q),x) for simplicity. Define a’k(x) in a similar

way. Then, we have

X
- dt
V4 ) = L“’km e

and for any o > 0, we have by the mean value theorenm,

X . eﬂx
1 dt el dt
a Lx W (8) T 9 ia‘f i
e

x b4

Thus

max |¢’k(Y) = 6(C189q)Y| << % max Wk_,_l(ﬂ = 5(C:8-Q)Y! + GG(Csan)x .
y<x y<eax

/2

Choosing a = (log :I:)-A » we deduce that

' max max H?k(Y) - 8(C,a,q) y|
920Q; (a,9}=1y<x

T xlog Q
M2y max max [, ) - 8Ca@y] F—a
920Q; (a,9)=1 y<e¥x (log x)

<< (log x)

Moreover, (1.2.2) shows that replacing Y with $ on the right introduces an
additional contribution of

k+2+% =
<<_(_128_*)_._.Q1 {L 10g dK+logq*x2}
(k+1)! ¢

1.6 We have a decomposition

o%) N _ 1 -
lxuk(x) - lPk(K(Cq)/Q: E(lcla'q)!x) = m')— ZX(a) '{Jk(K(Cq)/Q. lsc 8 Xs x)

where the sum is over charcters X of Gal(Q(Cq)/Q). The trivial character

contributes a term
ey _ 1
¢(q) ;Fk(x(cq)lq’ 5(_':' x) = (q) 'l}jk(K/Q. GC' x)

From the effective Chebotarev density theorem [1_2] , we have
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U, (R/Q, 6, 1) = -L—CKL x+ 06" L (log 0%

1

-1 1
2 (Iagx)2 ))

+ 0(x k—]".-(log x)k exp(-c o,

where c is a positive absolute constant and f is a possible Siegel zero of
K/@. (The implied constants are absolute). Using the bound

1 “1
B<m(1-blogdx'1- U“’g;)
' : d
K
of Stark [28] we deduce that for log Q, << log x,
(1.6.1) ):' max max |R)’k(y) - §(C,a,q)y|
92Q; (a,9)=1 y<x ‘
= § A max | § (R(5)/Q, &, @ X, y)|
a<q ®(q) X%£1y<x k" c
-1 1
+ 0(%x(logx)k+lexp(—cnxz (log -.v:)2 »

(Here the implied constant depends on the field K).

It is convenient to include onlfr primitive characters X(mod q)
(ie. characters which do mot factor through Gal('q(l;q )/®) for some proper
1

divisor 9y of q). This is easily done by observing that if X(mod q) is
induced by character X, (mod ql) with q1|q. q14‘= q, then

| K@ /0, 80 %, x) - F &G /0, 8,0 x;, B

1 k '
bt X 1 k a4
k! " f q/ql (log p) (log plll) << 7 (log x) log( ql)
Moreover, we have
! < lo(g ‘ Q)1
9 | q $(q LICH
9<0Q

Using log Ql << log x, we deduce that the first term on the right. hand side
of (1.6.1) is
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1 1 *
(1.6.2) << (logx) [ max 71 k@ ) /e, 5. 8 X, V)]
1<q<q y<x EICY) 5 k™ 7g c

+0( & g (og 0 T

where the asterisk on the sum indicates that we only include primitive
X (mod q).

1.7 Now let H' be a subgroup of Gl = Gal(K/Q) with H' N C#* ¢.
Set H= H" x Gal(Q(C y/@). Using (1.1.1), (1.3) and the invariance of

L-series under induction, we deduce that in the above sum, we may replace

F )/, 60X, ) by A+ BEGM, 8o OXIg. )

where A= |C|+|H"[/ |cH,] . |c1| and M is the subfield of R(L ) fixed by H.
(Note that M is also the subfield of K fixed by H' and so does not depend

on q). Moreover, we have

Dol 3o §, ®E M, 08 X ¥)

b e ) m, S @ Xlgs 1) = T

where ® ranges over the irreducible characters of H' and - €EH'NC. We

deduce from these observatioms that

' *
(1.7.1) I oy max D % RG)/, 60 % 9
' X

1 *
< EL 18| max { Y sk max [N &EOM we X y)l}
X

1[ w 1<q£Ql y<x

Finally, decomposing the interval (1'Ql] into 0{log Ql) intervals of the
form (%, 0], we find that the expression in large parentheses 1is

<< (log Q) max max leglozq 5 lﬂf R )M, w8 X, »l
ezq y<x ¢ 1<aqsqQ x ; .

Summarizing the discuaaiou of the previous paragraphs, we have proved the
following.
(1.8) Proposition

"\ max | (R(E ) /0y E(C12,0),3) = §(C,a,)y]
q<Q; (a,9)=1 y<x

<_J{.;§J_|H |£ *£, max max max & T ):* ]$k(l{(z; M, weyx,y) + E
(61l w Q<Q ys<x - 1<q2QX d
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where £ = log x, ﬁz = loglog x and

Nll-'
R

+ k+1
E << -é—(log i xexp(-cn.l{ (logx)™) +El:'(1°3 x) Q

D=

1 k+1 1
TS - + + ;
i (log x) Q, {=— log d + logg + x 1

We recall that

k
V@M wey, =5 I (og)(og—) wigy) x (")
q . - Nv
Nv <x
where v runs over primes of M.

1.9 We observe that if u and v are two irreducible characters of a finite
Galois group G = Gal(L/F), and Fu F are their Artin conductors then the
Artin conductor F o of U8V satisfies B v IFU(]') Fu(l) (cf. for example,
Martinet [ 16, p. 801). This fact will be used repeatedly

2. Phragmén—Lindelsf Theorem

2.1 We write s = 0 + it. Let £(s) be a function regular in a vertical strip
¢ <o £d and satisfying in this strip a growth condition

6
f214 J£e)| << el®l
for a positive constant § . Suppose that there are positive constants

C, D, ct, B and a constant Q satisfying

|£¢c + 1t)] < ¢|Q + ¢ + 1|
(2.1.2) i
|£¢a + 1£)| < DlQ + d + 1it]

The Phragmén-Lindelof theorem gives an estimate for f(s) when ¢ < ¢ < d.
We shall need it in the following sharp form given by Rademacher [22].

2.2 Proposition For ¢ < 0 < d, and f satisfying (2.1.1) and (2.1.2), we

have
d-g c-c
l£e)] < (c Ja+s|M?% @ Jo+s|®

2.3 We apply this in the study of a general class of Dirichlet series. Let

L(s) be a Dirichlet series satisfying the following properties. First, we
require
(1) L(s) =T L (8) for o > 1, where Lp is a polynomial in p The product

5]
is over all finite primes. Denote by m the degree of I. in p .

(i1) There is a positive integer d=d(L) with m,<d for all p and mp—_'- d for
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all but finitely many p.

Let us write

Lp(S) =

= [ =
vhere m, = m, € €and [nil 1. Define

m
P -1
v
L I
p(s) I

{=1

and set Lv(s) =] L;(s). Let A be a positive real number and a,b non-negative
P

integers with a + b < d. Set

a _ b
Me) = 4572 (812 p(Eyy @@V rE2y) L
' a , b
N(e) = 4% @2 r(2y) @D/ patlyy 1V,

Suppose that

(i11) A(s) and ﬂv(s) have an analytic continuation to the entire complex
plane except possibly for a pole at 8 = 0 or 1.

(iv) A(s) = w A"(1L - 8) with wE € |w| = 1.

2.4 Proposition Under the assumtions (i) - (iv) above, we have for
0<agx1, '

l-g

d
2 (rogladitl+2)91)

L@ +1t) | < (a(le] +2)%)
PROOF From (1), we see that for € > 0 ,
L@ +€ + 1) | < ca + 9

where £ denotes the usual Riemann zeta function. By (iv) and Stirling's

formula,
|L(-€ +1t)|.< A (le] +2) z(1 +€)
By Proposition (2.2), we have
l-g+€
2

L(o + 1t)| < C(1 + E)d (Aa(e| + 2)d)

. ~1
valid for -—;—f_ -€ 2 g<1+E < %. Choose € = ‘(log[A(It| + 2)d]) F
The result follows on noting that [(1+€) << gL,
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We note two interesting consequéncea of Proposition (2.4). These will not be
needed in the remainder of the paper.

2.5 Let f be a holomorphic cusp form of integral weight k for a congruence
subgroup of SLZCZZ) - Write L(s,f) for its associated L-series. For any
Dirichlet character ¥ , f 8 y is the twist of f by ¥ . The Shimura“
correspondence [ 26 ] attaches to f a cusp form F of weight %{k-bl) with the
following property. Write

F(z) = ] C(n)eZ™n2

n=1

for the Fourier expansion at = . There is a constant f such that for any

fundamental discriminant D of a quadratic field.

k-1
c(jop? = ap| 2 _L(%--. £8x)

where X(n) = (%) is the Kronecker symbol. The analog of the Ramanujan

conjecture (cf. the discussion in Goldfeld-Hoffstein-Patterson [8, p. 154]) is

c([p]) << |p|

for every € > 0. We see from Proposition (2.4) that

. k
(2.5.1) -c(|p]y << |p|* (tog [D])?
E+e
This is slightly sharper than the estimate fDl stated in [8, p. 154])

Iwaniec [11] has recently obtained a significant impravement of (2.5.1)
where the exponent % is replaced by - k -%E . ’

2.6 The secopnd application is to the residue of the Dedekind zeta function.
Let L/Q be a number field. Landau [l4] showed that there is a constant C > 0
8o that ’

-1
(2.6.1) : res CL(s) < CnL(logdL)nL

s=1

Siegel [ 27 ] obtained sharp values for C. We are interested in the power of
log dL' Suppose there is a subfield K C L satisfying

(1) L/K is Galois
(i1) for every non-trivial character of Gal(L/K), the associated Artin
L-series 1is entire.

(For example, K = L satisfies these conditions).
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Then

Tes CL(S)

s=1 x (1)

— < + 2

reS'QK(B) - g (log Ak X(;) log 2}

s=1
where A_ = d%(l) NormLIQ(Fx), and X ranges over the non-trivial irreducible
characters of Gal(L/K). By the conductor-discriminant formula,

log(d, /d,) = )Z( X(1) log A

Thus, we get (using the arithmetic mean-geometric mean inequality and

(2.6.1)),
‘ -1
res G _(s) < CnK (log d )nK 2" II{log A )X(l)
=1 K - & X X

-1 log(d, /d )\"
cnK.zn (log dK)nK (_aif_:l-fl(_).)

A

where n = X:((l) - This is an improvement over (2.6.1) whenever K is a proper
subfield of L. In particular, if L/Q is Galois, we deduce that for some

absolute constant C > 0.

"

—41
res £, (s) <CF + (log d )2
e = L
s=1
by taking a subfield K of L such that L/K is cyclic of prime order.
2.7 Remark It would be of interest to know whether the power of the

logarithm in Proposition (2.4) can be reduced.

3. Zero-free regions

3.1 Let L/F be a Galois extension of number fields and X be an abelian
character of G = Gal(L/F). We shall need a zero-free region for the Artinm

L~series L(s,x). Let F_denote the Artin conductor of ¥ and set

AXEdFHF/Q (Fx) .

3.2 Lemma For g > 1,

gl ' d r [ '

F 1 1 1 F 1 ' s Y

—fa — S = RS En — Re— (=) + LA

Regp ) < BT+t 3 103( (E nF) *y i) ¥Ry
2 w

where 0= r; + Zrz and L] is the number of real embeddings of F.

This is part of Lemma 3 in Stark [ 28].
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3.3 Lemma FPor o > 1, and non-trivial ¥,
L' 1
-Re T-(8,x) < ;X - Eae(s_p)

where C1 > 0 is an absolute constant, the sum is over all zeroes p of

L(s,x) with 0 < Re p< 1, and X= %- logAx ¥ a1, (] + 2).
Proof We just sketch the proof. Set

2

Meay) = A;’ () LizX)

where T'(e) is a product of np I'- factors. We have the functional aquation
As,Y) = w A (1-8,%)
withw € L, Iw] = 1, and also the Hadamard factorization

Aa,y) = e2¥P8 1 (1-8) 8/p
p p

where a = a(¥), b = b(x) are complex numbers and the product is over all
zeroes P of A(s,¥) (equivalently, over all zeroes p of L(s,X) with

0 <Re P<1l). By logarithmically differentiating both sides and using
Re b= - g Re(1/p), we find S

1 L]
Re L(e,00 = Floga - ] e () + Ref @)

For g > 1,

ReF(s) « nl.log(|=|+z)'

by Stirling's formula. This proves the lemma.

3.4 Proposition There 1s an absolute constant C > 0 such that L(s,Y) has

at most one zero in the region )
i "% <o <1

If this zero B'exists, then it is real and simple and x is a character of

order 1 or 2.

Proof For ¢ > 1, we have for non-trivial ¥,
L' L' L' 2
(3.4.1) 3¢( T (U,xo))+lo(-ReT(U+it,x)) + (-ReT(cI“i“zit,x >0

where xois the principal character mod FX « Then,
L]

y= (1ognp)(np)'“_<_—§ccr>
F

L'
=T @ .
op, F)=1

0

255
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C
and by lemma (3.2), we deduce that for o0 =1 + Ez 5

L' 1
- —_—
(3.4.2) i (G,XO) < o-1 C3I
where 02 i 03 are positive absolute constants. WNext, for o > 1,
Re(ﬁ)“ ,U-Bz 3-0
 is=e|®

and so, Lemma (3.3) implies that for any zero p of L(s,X) with 0 < Re p < 1,
(3.4.3) -Re L (5,10 < €T - Re(=x)
e L 1 s-p

Suppose that xz is not the principal character. Let X1 be the primitve

character inducing )(2 mod Fx. Then

Y Qogwnam™?

L] T
) -2 el < 0 <
y[Fx (1-(8y) ")
combining this with (3.4.3), '

L' 2
(3.4.4) =Re T(s’x ) < Cf&z
' " C
Using (3.4.2)-(3.4.4) in (3.4.1), we deduce that if p=B+iy, o= 1+ -22-

and t= Y, then’

3 4
G-1 " 5-8 '%L20 -
c 4 C
2 2
< el e ——
B PEITY T EEeSE

Chooeing (:2 < 1(05 shows that for an absolute C > 0O,

c
<]l - =
B bd

If xz is principal, Lemma (3.2) impiies that

-1

—_— )4
o-ifc)t C

L' 2
'RET(S-X ) < Re( 3

We deduce that B < 1 - -FL— if |y| > CGIL for some C, > 0. The usual
arguments show that if |y| < Céa: , then vy = 0, and that there is at most
one such zero and that it is simple (cf. [4, pp. 92-93]).
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3.5 Finally, we need an analogue of Siegel's theorem giving a bound for the
possible real zero in Proposition (3.4). We adapt a method of Stark [ 28].
Thus, let X be a real character of G of conductor Fx . Let N/F be the
extension defined by it. We suppose that ¥ is not the trivial character, so
that N is quadratic over F. As before, we write A = AX = dF(NFx)' We may

view ¥ as a quadratic Hecke character of F.

3.6 The Brauer-Siegel theorem implies that as we range over a set of quadratic

Hecke characters y of F with NFX + o, we have

(3.6.1) Ly 5o BEED -1
c; (log dF)nF Ax

where € > 0 is arbitrary, C1 > 0 is an absolute constant, and C(e) > 0
depends only on € . Indeed, if we let R denote the residue of cN(a) at 8 = 1
and r the residue of gF(s) at 8 = 1, then R= L(1,x)r. The Brauer-Siegel

theorem states that for any € > 0,
R > C(E)/d; .
Also, we have by (2.6.1) that
n

T < (Cl log dF) ‘

Stnee d, = d2 NF, , we conclude that (3.6.1) holds. This implies that the

X
exceptional zero of Proposition (3.4) satisfies

c(g)

B<1- o
€
(C; logd)) Ay

This can be refined_using the following result of Stark [ 28, Lemma 10].

3.7 Lemma Suppose there is a sequence of fields

Q=M CM CH, C...CH =N

such that for 1 < 1 < t, Mi/Hi__l 1s normal. Suppose there is a real B in the

range
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such that CH(B) = 0. Then there is a quadratic field S C M with I;S(B) = Q.
We shall use this to prove the following.

3.8 Proposition Let € > 0 and ¥ as in (3.5). Let J denote the normal

closure of F over . Then

Bimax(l-ﬂ; .1--——--]3——)
(d§ A) 160, 1og(d§ A)

Proof We may assume that B satisfies

(3.8.1) " gmessseloc i,

Pl i
15“J log(dJ A)

Then, the composition JN is Galois over N and so, by a well-known result of

Aramata-Brauer, Cm(B) = 0. Moreover,

2n, n n
<dF Ji(diA)J

(3.8.2) dp < d; - dy

and so (3.8.1) implies that

1e—t— <p<

16 log dJN

Finally, JN 2 J 2 @ is a normal tower, and so, by Lemma (3.7), there is a
quadratic subfield S of JN with I;S(B) = 0. By the classical Siegel theorem
(see for example [ 4, section 21] or Goidfeld [7]) there is a constant

C(e) > 0 so that

B<l-£('£)-
S
Nuw.,
n_ f2 n_/2
d dJN >dJ
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Hence,

; C(e)
BEl= ZEInJ

4y

Combining this with (3.8.2) and replacing € by £/2 proves the result.

4. Gallagher's Method

4.1 Suppose we have a Dirichlet series
L(8) = Zan n.°
for g = Re(s) > 1. For any Dirichlet character ¥ , set
L(s,x) = ):anx(l'n)n-sI

(We are thus departing from the notation used in earlier sections for
Artin L-functions). Suppose that all the L(s,x) satiasfy the hypotheses
(1)=(iv) of (2:3). Write A for the conductor of L(s) and Ax for the
conductor of ‘L(s,%). We assume that
(4.1.1) ' A << Add

if q = conductor of ¥ . Let us also write

) -3
T - L by X@)n

L0 = [ A ¢ x@n™

for o > 1. Let z > 0 be a parameter to be specified later. For any

Dirichlet character ¥ , define

259
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F_(s,X) = I Am) x(m) c, n
n<z

6 (s,x) = ] A@) x(m) €™

:1>z

M (8,X) = [ b x(@ n®
n<z

We use an identity of Gallagher as modified by Bombieri [ 2]

(4.1.1) -—(s.x) = G,(1-1M) + F 1= m) - L' M

4.2 Let k be a positive integer and define for any C > 1,

<5
lp (I.X) z.n.i J (BQX) k+l
(c)
(Again, this is a slight departure from the notation of section 1). Our aim
in the next few paragraphs will be to obtain estimates for
*

1<q<Q X

Here, the inner sum ranges over primitive characters YX(mod q).

We have from (4.1.1)

S

(4.2.1) W Gx) = zﬁi I G, (1= I..H) k+1 +
(c)
1 xs 1 f xs
nt J s L T J VB T
© ©

4.3 since F, and M_ are Dirichlet poly’nomials_’ and L, L" are analytic for all
5, we can move the line of integration in the second and third terms of the
above expression, into the critical strip. Using the inequality
2|abf < [a]z + |b[2 repeatedly, and taking C= 1 + 10; =

obtain ‘ .

, k> %—, we

%31 7 7 Uy x| << x ] I J(|Gzlz+|1‘wz]z) '154-1'1
1<q2Q X 12Q X (g Is|
1

+ x z
Q<

* 5 2 2 2 12 ds
@+ [F |7+ |m |7+ [P M |7+ 1|7 + [L* SEFT

I
X (=)

Q

P ——,

(
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Most of these terms can be handled by the large sieve inequality of Gallagher.

We briefly review how this is done.
4.4 Lemma (Gallagher) If ZIAnl <ooand T > 1, we have
* s 2 T 2 2
) J ) A X)) alt|“ae << ] [Anl (n + Q“T)
1<q<Q X n=1 n=1 .
(see for example, Bombieri [2, p. 30]).

4.5 Using this, we find tﬁat
cH Mn)z !cn’z

1ot ] el <

+
1<q2Qx oy fsllf' 1 n> n2C

(n “"Qz)

2
<< dzflog x)3. Qa+ Qz__)

since |Cn] < d. Moreover, for any integer j > 1,

c-ji CH(3+1)1 cH(3t1)
* *
I + << I 1 ls, 1% |ds|
1<a<QX  oqptpr oL 377 LRAReX cogghs

2
<< -]'E dz(logx)s a+ _Q_)
P z

Take k > 2, and sum over j to deduce that

2
(4.5.1) ;o ! e |2 o8 <« a®(ogx)® @ + I
1<q<Q x () |s]
- Next,
1-1IM = - an x(n) o~ ?
z ngz elﬂ e —:'
e<z

It is easy to see that b a=0 ifa >dand fora < d, |b a.l < (:). Also,
p P

|an| < Td(n) where Yy (n) represents the number of ways of writing n as an

! unordered product of j integers. Therefore,

I X be anlel = Td+1(n) -r(n)d
e|n
e<z

: where T(n) = T-z(n) is the usual divisor function. Hence,
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(4.5.2) .

)

l1<gq=<Qx ©

2
T (n) 2d
|2 ds| d+1 T{n)
.Il- ZI IS[k+1<< Z nZC

(n+¢?)
n>z .

2,2d ; 2
< g 0 @TTT @+ n¥?yra+ L)

The other sums are handled gimilarly, and we obtain

ds

* 2 2 2
I 1 L+ [F |7+ M [+ |7 u | )Islkﬂ

1<q<Q x 11
(3)

' 2 4
4 22d d2 Z (logn) n't(n! (n+Q2)
n<z :

2d 2

(6.5.3) << 28 22 (g?+22y(10g )Y’

All of the implied constants are absolute. It remains only to treat

(4.5.4) oy J (il.|2+|1.'12)—J‘?Tsl—1
1<q<Qx 3 _ |s]
(3)

At this point, we depart from the method used in the proof of the classical
Bombieri-Vinogradov theorem since we do not have an approximate functional
aquation for L in which the dependence on the field and conductor is explicit.
In prineiple, it should be possible to derive such an estimate, but in fact
it is more convenient to use a method of Ramachandra to estimate (4.5.4)

more directly. This 1s discussed in the next section. (The referee points
out that it may also be possible to generalize Vaughan's proof [ 31] which

does not use the approximate functional equation).

5. Mean Value Estimates

5.1 We use a method of Ramachandra [23] . Write
L(s,x) = 8(s,)) L (1-8,%)
where

8(s,x) = A

> M=

8
Yxfl - s)/Yx(S)

and

—(e+1)/2 ., s*1. %

Y (s) = cn"’: rtina-“ ( r(==mn
X 2 2
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Here, a, and b are non-negative integers gatisfying ax+ bx = d. We deduce

from Stirling's formula that

: d %'”
(5.1.1) 8(8,X) << (Ax{lt1+2) )
for -%f_c <1, as |t| +=
5.2 For any U > 0, we have
b -n/U 1 W
(5.2.1) L(s,X) = z a x(n)e R - gy J L(s+w,x) U T'(w)dw
n=1
©)
where Cl = -% - ﬁ‘-’- . Here, U and V are parameters to be specified.

For Re(s+w) < 0, we can write

Ls+w,X) = 8(8+w,x) [ 3 X(n) o
n=1

stw=-1

We split the sum into two parts corresponding ton > U and 0 < u.
Substituting into the integral in (5.2.1) we get

@ = - e + -
L(s.x)=nglanx(n)enmn°-ﬁ J B +w,x) 1 2 x@n® YT oY renaw

n>0
---2-1— J 8(a +w,x) I a x(n)n§+w‘1 ™ I (w)dw
mi n
. (©.) n<l
1
5.3 We move the second integral to the line C2 = - Ial-'é—v and apply the
Cauchy-Schwartz inequality to both gides. Using (5.1.1), we deduce that
¥ T o ~Leie 2 -
1 2 -nfU 2
(5:3.1) [L(g+1t.x) | de << | I a x(m)e n | de
-T -T n= 1 ¥
dy -2C o T -
T 1 _ ~le——+i(y+t)
+ (ﬁ‘ﬁ_) f I | I 3 x(m)n Log ¥ | % I‘(cl+iy)zdt: dy
n>U
— =T
= T 1 1
dy -2C -se——=ti(y+t)
T 2 - — : 2
« (AL J [ | | 3 Xma 2 o8V |2 r(c, +iy) ac ay
U w -1 02U
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Summing both sides over primitive characters ¥X{(mod q) and q € Q, we can

write the right hand side of (5.3.1) as Xl+ Z2+ 23 . From Lemma 4.4,
we see that

® _ 2
5 <c 1 1a 12 e ot mr o << e m(og W)
n= 1 .
We choose .3_-.
v=u= @adth?
Then,
I e (AQde)%( z _,__]an_lz_._(n'l'qz'r))
2 W aip aZ” (2/10gV)
447 ., a2 2 &
<< (aQ"TH (0 + 5 Y(logl)~ = (U + Q°T)(logU)
Similarly,
—le—2_
I I laf? LogV ( + o?n)
n
n<U
2 a2
<« (0 + Q°T)(logU)
Summarizing, we have
(5.3.2) ;o J ILed+ae,0(2ae << @+ @’ ogm? .
qf,Q X -T

5.4 Proposition (2.4) implies that

o -]

1
3 2d
i 2 _dt d.d\2 4.4, ae
J [L(3+it,x) | k+1 <<J (AQ't)" (log AQ't) =757
T T .
1
1 2
2d 24
oo aghH? a7 (og aqh) aogm
k-1d
lg
T

Summing over primitive ¥X(mod q) and q £ Q yields
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d

1
© - =42 "
Z
;1 I lL(F+ie 2012 k+1 « (d10g 0*a-0" (10g " (1og 1"
q2Q X i
T Tk' 2d

E€/d

Let -i'- >€ > 0. We choose T= Q and k = %(1"' é) . Then, we get

@

15[ gl Hl«qclogm (€dloga)’'a
1<Q X

raf=

The same estimate holds if we change the range oil'f integration on the left to

(~=, -T). Summarizing, we have proved that

(5.4.1) y I J L8, 12 —@lf:{—l
q<Q X |s|
2
&2 d max (i, d) F o 2+”§' % d;e 2 %
<< (logA)? (logQ) W w@+e)® {q +4%q +Q°A" }

5.5 An estimate.for-the the term in (4.5.4) involving L'(s,X) is obtained
in a similar fashion. We begin with

Le) = | o x(e™Un™® - L Jf B(a+w,x) L(1-8-w,%) U° T(w)dw
=1 ¢ g

and differentiate with respect to 8. We obtain

L' (o0 = - a_x@)e ™7 (logmn™® - 2 J 8" (8 +w,x) LV (L -8 -w,X) U T(w)dw
)
+5k | Betux) L’ (1-8-w,3) U T(w)dw
@)

We then proceed as before with the last iptegral, decomposing the Dirichlet
. . ;
series for Lv at U. There is essentially no change in the previous

calculation. For the first integral, we note that
el
8'(s+w,x) = 68(a+tw,X) -8—(s+ w,X) .

From Stirling's formula,

St +u,n) << dltog(le+yl +2) + =iy )
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where 8 = % +1it, w= Cl + 1y . Thus the second integralnis a magnification

by a factor of 0(d logU) of the integral in (5.2.1). Finally, the Phragmén-
Lindelof estimate for L' (8,X) is a magnificatian of the estimate for L(s,X)
by a factor of (log(A (Jt] + 2) )) - Putting all ‘these observations together,
we deduce that

(5.5.1) E lc+1

Z* J IL'(S-X) _IEEJ_
X 1
2

+E 1l d+€

—

. 2+E
< (logA)d(d+2) (logq)d{d-l-z,) (d+E)d(d+2) (q d , A2 Q 2, qu }

N~

5.6 We put together all the estimatesof the previous two sections. Using
(4.2.1), (4.3.1), (4.5.1), (4.5.3), (5.4.1), (5.5.1) we see that

2.2d 2
I Dol < (@en?2): xogm @027 40,
a2Q X :
1 1
+x? 220a (@@ +2H) (tog T+ @+ 3FD T (100 4) (10 )94+ D .
2+ 1 d+€ 1
cfq 94a2q 2 +¢2a2) .
We chose z=Q(log x) with v> (d -!-1}2 2d D. Let £ = logx and suppose that
. — dfz"E

(5.6.1) -CYiQf_min(x vt ),x » X )

Then, we deduce that

& %
(5.6.2) %qg E ¥, (.30 | << €, x(logx) D

Q

where 1

2 Zd) (d+E)d(d +2) z(log A)d(d+2)) .

C':1 = max((d+l)

We remark that this estimate is valid for any Dirichlet series L(s) satisfying
the conditione at the beginning of (4.1). Notice that if-d < 4, we can take
1
==

Q=x2 .

6. Estimates for the Initial Range

To take care of the range Q < (log x)Y » We must specialize to the following
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case. Let L/F be an abelian extension of number fields, with group G. Take

for L(s) and Artin L-series of G. Then L(s) satisfies the hypotheses of §4
with d = ne = [F:Q) . Thus, under the condition (5.6.1), the estimate
(5.6.2) holda. We shall need the following estimate.

6.2 Lemma Sul:;pose that L is normal over §. Let 1 < q, N be positive
integers with AX << Ag < (log x)N . Then, thgre are positive constants
cl = Cl(N) and ¢
-1/8 5
C, = CZ(L,H) = min(dL 4 (32nL log dL) )

so that for any primitive Dirichlet character y(mod q),

[

IlJJk(x.x)l << (log AX) xexp(-clcz(logx)z )

Proof This is by the traditional method (see [12] or [18]). We have for

2<T<x,

p 2
Oox) = - ] e+ o(dxdoex)

+
ly|<r p**1 _

Denote by N(t,x) the number of zerces p of L(s,x) with .]t - Imp| <1 and
0 < Re p <1l. We have

N(t,y) << logAx-i' dlog([t]| +5) .

Hence,

k+1

= ¥ X I ————14. N(i,x) << log A
k+1l X
lyl<T »p I<T 3

<< log A * dlogq
Now using Propositions (3.4) and (3.8) and choosing

1
T= exp( 1 ((log )% - % log A

and € = 1/2N, the result follows.

6.3 Let Y>O0and U= (log x)' . If q <U, then Lemma (6.2) implies that

for some ¢ = ¢(d,Y), and for x >> eA, and any D > O,
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(=]

(6.3.1) L) I* (v Gex0 | << Uxexp (~e(1og )% )
q Uy

<< x (log x)-D

S Completion of the Proof

7.1 We now return to the notation and context of section 1. Thus K/Q is a
Galoils extension with group Gl' and C is a conjugacy class in Gl' Let H'
be an abelian subgroup of Gl such that H' N C# ¢ . Let M be the subfield
of K left fixed by H'. Then, for any 4, K(Cq)/H is abelian. Let w be an
irreducible character of H'. We appeal to the results of sections 4-6

with L(s) the Arrin L-series L(s,w). Let € > 0 and D > 0. We deduce from
(5.6.2) and (6.3.1) that for d = [M: Q] and any

l_e 1 _e
Q<min® L x47F ) Lq
we have
Loy 7 e k@am,ue
» th)l
Qgciqyx © @

<< x(log x)dD

wvhere the implied constant depends on K, € and D. Notice that this dependence
can be made explicit for Q larger than a power of (log x), but not for small
values of Q.

Now, proposition (1.8) implies that

max max I‘J)k(K(Cq)/Q ’ E(C:anq):Y) - G(C,a,q)yl
9<0Q, (a,9)=1 y<x

<< x(log x)3 =4
By the reductions of section 1, we deduce that

max max |w0(K(c )/Q’ E(Caa,Q)!Y) - G(CIE.Q)Yl
950Q; (a,9)=1 y<x q

<< x(log x) -

7.2 Let H be the largest abelian subgroup of Gl with HN C# ¢ . Let

d=[G, :H] . Set

1
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—

Jd-z 1f d>4
n:

i 2 if d<4

~

Take an element g € C and let Hl be the subgroup generated by g. Then

d < [G]. i H].] < % ’GII . We can now state the main result.
Lo
7.3 Theorem Let Q= xn . Then for any A > 0,

Z' max max |7 (y,q,a) - ]—’g—n(y)l << 3 .
q9<Q (a,9)=1 y<x ©C Glé(a) (log x)A

The implied constant depends on K, € and A.

7.4 In general, it is possible to replace n by a larger value as follows.
Let

d* = pin max [Gl:ﬂlm(l)
H w

where the minimum is over all subgroups H satisfying

(1) BNncCc# ¢

(ii) for every irreducible character w of H and any non—-trivial Dirichlet
character ¥, the Artin L-series L(s, w & %) is entire. The maximum is over
irreducible characters of H. Then, in the defR of n we can replace d with d*.

8. The Least Prime in a Conjupgacy Class

8.1 As before, let K/Q be a Galois extension and C a conjugacy class in
G = Gal(K/Q). For 0 < a, q€ Z, (a,q) = 1, denote by Pc(q,a) the least
prime p £ a(med q), p unramified in K and (p, K/Q) = C. Define
Fo(q) = max P.(q,a)
(a,q)=1
From the work of Lagarias-Odlyzko-Montgomery [13] it is known that there is
an absolute constant L > 0 so that

L

Fc(q) << dK(Cq)

Moreover, assuming the Generalized Riemann Hypothesis, we have for every ’
€ >0,

2+€
Fa(q) & (log dK(Cq))
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Notice that dK(C ) can be as large as dﬁ(q) q¢(q)[K:Q] . Let n be as in (7.2).
q

As an application of the main theorem, we shall verify the following.

- : +e
8.2 Proposition For any € > 0, Fc(q) i_qn with the possible exception of
a set of q of density 0. The exceptional set depends on K, C and € .

Proof For each @ > 0, set

S = {-zl-QiqiquC(q) > q"*€ )

+€
Let x = (%Q)n 3

Theorem (7.3) we deduce that

Eﬁl_OE_Qfs[--'LC—[-Lix« ) H.Lix<<_x__
o % " Te as, 1o 8@ o7

Then, for q € SQ’ ﬂc(x,q,a) = 0 for some a(mod q). From

Thus,

syl << % < 5
Q (loglog Q) (log Q)

We therefore get

la<q:Fya) >q" "%} « ot —1—=o@
(log Q)

Remark The problem of estimating F(q) seems to have first been considered

by Turdn [ 29 ] who showed (assuming the Lindelof hypothesis) that F(q) << q" +&
for a set of q of density 1. When K = Q, the proposition gives F(q) << qz"}-E
for a set of q of density 1. This can be further improved by utilising the
recent work of Bombieri-Iwaniec-Friedlander [3].
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