Math 221 Queen's University, Department of Mathematics

Vector Calculus, tutorial 5

October 2013

1. For the function $f(x, y) = 2x^2 + y^2$

a) Compute the family of flow lines for the gradient field $\vec{F}(x,y) = -\nabla f(x,y)$.

b) Sketch some of the level curves of the function f(x, y) together with some of the lines of steepest descent for this function.

2. For the vector field $\vec{F} = x^2i + xyj + 2zk$, and the curve which is the intersection of the cylinder $(x - 1)^2 + y^2 = 2$ with the plane x + y + z = 4, calculate the work done in moving a particle one complete cycle of the curve, with counterclockwise orientation (as viewed from above the plane).

- **3.** Consider the vector field $\vec{F} = 3\vec{i} 2\vec{j} + \vec{k}$.
- **a)** Show that \vec{F} is a gradient field.

b) Describe the equipotential surfaces of \vec{F} in words and with sketches

c) Calculate the work done by the vector field \vec{F} in moving a particle along the parameterized path $\vec{r}(t) = (2, -5, 7) + t(-2, -4, 6), -1 \le t \le 1.$