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1. For the parameterized helix C, given by ~r(t) = cos(t)~i + sin(t)~j + t~k, on the time

interval 0 ≤ t ≤ 1.25π, calculate the path integral
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To calculate the path integral looks very difficult, even with the parameterization

of the path C. In addition the components of the field ~F = yz2exyz
2~i + xz2exyz

2~j +
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2~k, can be shown to match the partial derivatives of the potential function
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This verifies directly that the field ~F is conservative, and therefore the path integral

corresponds to the work done by the gradient field between the endpoints of the

helical path C
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2. Consider the vector field ~F : R× (0,+∞)→ R2 given by

~F (x, y) =
x+ xy2

y2
~i− x2 + 1

y3
~j.

a) Determine whether ~F is a gradient field or not, and give an explanation of your

conclusion.

We check the condition for exactness of the vector field ~F .
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The vector field is exact and the domain of the vector field dom~F = R× (0,+∞) is

simply connected. Every closed curve C in this domain, encircles a region R which

is entirely conatained in dom~F . By the theorem we have proved in class, we can

conclude that the vector field ~F is conservative on the domain R× (0,+∞).

b) Calculate the work done in moving a particle along the curve y = 1 + x− x2 from

(0, 1) to (1, 1).

We will first construct the potential function whose gradient coincides with the

vector field ~F . Then we can calculate the work done by the conservative force ~F

by taking the difference of the potential at the endpoints of the oriented curve y =

1 + x− x2 from (0, 1) to (1, 1).
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It only remains to compute the work using the fundamental theorem
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3)Let ~F = (3x2y + y3 + ex)~i +
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~j. Consider the line integral of ~F around

the circle of radius a, centered at the origin and oriented counterclockwise.

a) Find the line integral for a=1.

The vector field ~F looks complicated enough on the cirlce of radius a, to attempt a

calculation using Green’s Theorem, rather than a direct calculation of the circulation

of the vector field around the boundary of the circle. For this purpose we have
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b) For which value of a is the line integral a maximum. Give a clear explanation of

your conclusion.
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~F · d~r = 24πa− 6πa3
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The circulation of the vector field around the counterclockwise circe of radius a ,

reaches a maximum value when a=2.
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