Math 221 Queen's University, Department of Mathematics

Vector Calculus, tutorial 7

November 2013

1. The electric field \vec{E} , at the point with position vector \vec{r} in \mathbb{R}^3 , due to a charge q at the origin is given by

$$\vec{E}(\vec{r}) = q \frac{\vec{r}}{\|\vec{r}\|^3},$$

a) Compute curl \vec{E} . Is \vec{E} a path independent vector field? Give a clear explanation of your conclusion.

b) If possible, find a potential function for \vec{E} .

2. Calculate the area of the bounded region inside the folium of Descartes, $x^3 + y^3 = 3xy$.

a)Sketch the bounded region and show that this region has a boundary which is parameterized by the vector function $\vec{r}(t) : [0, \infty) \to \mathbb{R}^2$

$$\vec{r}(t) = \frac{3t}{1+t^3}\vec{\mathbf{i}} + \frac{3t^2}{1+t^3}\vec{\mathbf{j}}$$

b) Using this parameterization and Green's Theorem calculate the area of the bounded region.

3) The donut shaped surface S (called a torus)

$$\left(\sqrt{x^2 + y^2} - a\right)^2 + z^2 = b^2, \quad a > b > 0$$

can be parameterized by $\mathbf{T}: [0, 2\pi] \times [0, 2\pi] \to \mathbb{R}^3$.

$$\mathbf{T}(\theta,\phi) = (a+b\cos(\theta))\cos(\phi)\mathbf{\vec{i}} + (a+b\cos(\theta))\sin(\phi)\mathbf{\vec{j}} + b\sin(\theta)\mathbf{\vec{k}}$$

Find the surface area of the torus **S**.

b) Calculate the area of the ellipse **E** on the plane 2x + y + z = 2 cut out by the circular cylinder $x^2 + y^2 = 2x$.