Solutions #10 - 1. (a) Find a parametrization for the hyperboloid $x^2 + y^2 z^2 = 25$; - (b) Find an expression for a unit normal to this surface. - (c) Find an equation for the plane tangent to the hyperboloid at the point (a, b, 0) where $a^2 + b^2 = 25$. - (d) Show that the lines $t \mapsto (a-tb, b+ta, 5t)$ and $t \mapsto (a+tb, b-ta, 5t)$ lie in the surface and in the tangent plane found in part (c). Solution. (a) In cylindrical coordinates, we have $r^2 - z^2 = 25$. Since $r \geq 0$, it follows that $r = \sqrt{25 + z^2}$. Hence, the parametrization $\vec{\sigma} : [0, 2\pi) \times \mathbb{R} \to \mathbb{R}^3$ with $$\vec{\sigma}(\theta, z) = \sqrt{25 + z^2} \cos(\theta) \vec{\imath} + \sqrt{25 + z^2} \sin(\theta) \vec{\jmath} + z \vec{k}$$ is one possible solution. (b) The standard normal vector is $$\frac{\partial \vec{\sigma}}{\partial \theta} \times \frac{\partial \vec{\sigma}}{\partial z} = \det \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ -\sqrt{25 + z^2} \sin(\theta) & \sqrt{25 + z^2} \cos(\theta) & 0 \\ \frac{z \cos(\theta)}{\sqrt{25 + z^2}} & \frac{z \sin(\theta)}{\sqrt{25 + z^2}} & 1 \end{bmatrix}$$ $$= \sqrt{25 + z^2} \cos(\theta) \vec{i} + \sqrt{25 + z^2} \sin(\theta) \vec{j} - z \vec{k} .$$ Since $$\left\| \frac{\partial \vec{\sigma}}{\partial \theta} \times \frac{\partial \vec{\sigma}}{\partial z} \right\| = \sqrt{(25 + z^2) + (-z)^2} = \sqrt{25 + 2z^2}$$, the vector $$\frac{\sqrt{25 + z^2} \cos(\theta)}{\sqrt{25 + 2z^2}} \vec{\imath} + \frac{\sqrt{25 + z^2} \sin(\theta)}{\sqrt{25 + 2z^2}} \vec{\jmath} - \frac{z}{\sqrt{25 + 2z^2}} \vec{k}$$ is a unit normal to the surface. (c) If $f(x, y, z) = x^2 + y^2 - z^2 - 25$, then the hyperboloid is the level surface at height 0 and the tangent plane at the point (a, b, 0) is $$f_x(a,b,0)(x-a) + f_y(a,b,0)(y-b) + f_z(a,b,0)(z-0) = 0$$ $$2a(x-a) + 2b(y-b) - 2(0)(z) = 0$$ $$ax + by = a^2 + b^2 = 25.$$ (d) Since $$a(a \pm tb) + b(b \mp ta) = a^2 \pm tab + b^2 \mp tab = a^2 + b^2 = 25$$ and $$(a \pm tb)^2 + (b \mp ta)^2 - (5t)^2 = a^2 \pm 2tab + t^2b^2 + b^2 \mp 2tab + t^2a^2 - 25t^2$$ $$= (a^2 + b^2) + t^2(a^2 + b^2 - 25) = 25,$$ if follows that the two lines lie on the hyperboloid and the tangent plane. \Box Alternative Solution for 1(c). From the parametrization in part (a), we see that the point (a, b, 0) where $a^2 + b^2 = 25$ corresponds to the point $(\theta, z) = (\theta, 0)$. In particular, we have $a = 5\cos(\theta)$ and $b = 5\sin(\theta)$. Hence, Part (b) implies that the normal vector to the tangent plane at the point (a, b, 0) is $\sqrt{25 + 0^2} \cos(\theta) \vec{\imath} + \sqrt{25 + 0^2} \sin(\theta) \vec{\jmath} - 2(0) \vec{k} = a\vec{\imath} + b\vec{\jmath}$. Therefore, the tangent plane at the point (a, b, 0) is $$(a\vec{\boldsymbol{\imath}} + b\vec{\boldsymbol{\jmath}}) \cdot ((x-a)\vec{\boldsymbol{\imath}} + (y-b)\vec{\boldsymbol{\jmath}} + (z-0)\vec{\boldsymbol{k}}) = 0 \implies ax + by = a^2 + b^2 = 25. \quad \Box$$ 2. Let $\vec{H}(x,y,z) := (e^{xy} + 3z + 5)\vec{\imath} + (e^{xy} + 5z + 3)\vec{\jmath} + (3z + e^{xy})\vec{k}$. Calculate the flux of \vec{H} through the square S of side length 2 with one vertex at the origin, one edge along the positive y-axis, one edge in the xz-plane with x > 0, z > 0 and normal $\vec{n} = \vec{\imath} - \vec{k}$. Solution. Since the unit normal to S is $\frac{1}{\sqrt{2}}\vec{n}$, we have $$\int_{S} \vec{H} \cdot d\vec{S} = \int_{S} \vec{H} \cdot \frac{1}{\sqrt{2}} \vec{n} \, dA = \frac{1}{\sqrt{2}} \int_{S} (e^{xy} + 3z + 5) - (3z + e^{xy}) \, dA = \frac{5}{\sqrt{2}} \int_{S} dA = \frac{5}{\sqrt{2}} \text{Area}(S) = \frac{5}{\sqrt{2}} (2^{2}) = 10\sqrt{2}.$$ Alternative Solution. Since the distance between the origin and the point $(\sqrt{2}, 0, \sqrt{2})$ is two units, S is parametrize by $\vec{\boldsymbol{\sigma}} : [0, 2] \times [0, \sqrt{2}] \to \mathbb{R}^3$ with $\vec{\boldsymbol{\sigma}}(u, v) := v\vec{\boldsymbol{\imath}} + u\vec{\boldsymbol{\jmath}} + v\vec{\boldsymbol{k}}$. The standard normal vector is $$\frac{\partial \vec{\sigma}}{\partial u} \times \frac{\partial \vec{\sigma}}{\partial v} = \det \begin{bmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \vec{\imath} - \vec{k}.$$ Thus, we have $$\int_{S} \vec{\boldsymbol{H}} \cdot d\vec{\boldsymbol{S}} = \int_{0}^{\sqrt{2}} \int_{0}^{2} \vec{\boldsymbol{H}} \left(\vec{\boldsymbol{\sigma}}(u, v) \right) \cdot \left(\frac{\partial \vec{\boldsymbol{\sigma}}}{\partial u} \times \frac{\partial \vec{\boldsymbol{\sigma}}}{\partial v} \right) du dv$$ $$= \int_{0}^{\sqrt{2}} \int_{0}^{2} \left((e^{uv} + 3v + 5)\vec{\boldsymbol{\iota}} + (e^{uv} + 5v + 3)\vec{\boldsymbol{\jmath}} + (3v + e^{uv})\vec{\boldsymbol{k}} \right) \cdot (\vec{\boldsymbol{\iota}} - \vec{\boldsymbol{k}}) du dv$$ $$= \int_{0}^{\sqrt{2}} \int_{0}^{2} 5 du dv = 5(2)(\sqrt{2}) = 10\sqrt{2}.$$ **3(a).** The torus T can be parametrized by $\vec{\tau}$: $[0,2\pi) \times [0,2\pi) \to \mathbb{R}^3$ where a > b > 0 and $$\vec{\boldsymbol{\tau}}(\theta,\phi) = \left(a + b\cos(\theta)\right)\cos(\phi)\vec{\boldsymbol{\imath}} + \left(a + b\cos(\theta)\right)\sin(\phi)\vec{\boldsymbol{\jmath}} + b\sin(\theta)\vec{\boldsymbol{k}}.$$ Find the surface area of T. Solution. The standard normal vector to T is $$\frac{\partial \vec{\tau}}{\partial \theta} \times \frac{\partial \vec{\tau}}{\partial \phi} = \det \begin{bmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ -b\sin(\theta)\cos(\phi) & -b\sin(\theta)\sin(\phi) & b\cos(\theta) \\ -(a+b\cos(\theta))\sin(\phi) & (a+b\cos(\theta))\cos(\phi) & 0 \end{bmatrix} \\ = -b(a+b\cos(\theta)) \det \begin{bmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ \sin(\theta)\cos(\phi) & \sin(\theta)\sin(\phi) & -\cos(\theta) \\ -\sin(\phi) & \cos(\phi) & 0 \end{bmatrix} \\ = -b(a+b\cos(\theta))(\cos(\theta)\cos(\phi)\vec{\imath} + \cos(\theta)\sin(\phi)\vec{\jmath} + \sin(\theta)\vec{k}),$$ so its magnitude is $$\left\| \frac{\partial \vec{\boldsymbol{\tau}}}{\partial \theta} \times \frac{\partial \vec{\boldsymbol{\tau}}}{\partial \phi} \right\| = b \left(a + b \cos(\theta) \right) \left\| \cos(\theta) \cos(\phi) \vec{\boldsymbol{\tau}} + \cos(\theta) \sin(\phi) \vec{\boldsymbol{\jmath}} + \sin(\theta) \vec{\boldsymbol{k}} \right\| = b \left(a + b \cos(\theta) \right).$$ Consequently, the surface area of the torus is Area(T) = $$\int_{T} 1 dA = \int_{0}^{2\pi} \int_{0}^{2\pi} \left\| \frac{\partial \vec{\tau}}{\partial \theta} \times \frac{\partial \vec{\tau}}{\partial \phi} \right\| d\theta d\phi$$ = $\int_{0}^{2\pi} \int_{0}^{2\pi} b \left(a + b \cos(\theta) \right) d\theta d\phi = b \left(\int_{0}^{2\pi} d\phi \right) \left(\int_{0}^{2\pi} a + b \cos(\theta) d\theta \right)$ = $2\pi b \left[a\theta + b \sin(\theta) \right]_{0}^{2\pi} = 4\pi^{2} ab$. **3(b).** Find the area of the ellipse E on the plane 2x + y + z = 2 cut out by the circular cylinder $x^2 + y^2 = 2x$. Solution. By completing the square $x^2 - 2x + y^2 = (x - 1)^2 - 1 + y^2$, we see that the cylinder is given by $(x - 1)^2 + y^2 = 1$. Hence, the region bounded by the cylinder is parameterized $\vec{\xi}$: $[0, 1] \times [0, 2\pi] \times (-\infty, \infty) \to \mathbb{R}^3$ where $$\vec{\xi}(r,\theta,w) := (r\cos(\theta) + 1)\vec{\imath} + r\sin(\theta)\vec{\jmath} + w\vec{k}.$$ It follows that the intersection E of this region with the plane z=2-2x-y is parameterized by $\vec{\sigma}: [0,1] \times [0,2\pi] \to \mathbb{R}^3$ where $$\vec{\sigma}(r,\theta) := (r\cos(\theta) + 1)\vec{\imath} + r\sin(\theta)\vec{\jmath} + (-2r\cos(\theta) - r\sin(\theta))\vec{k}.$$ Since $$\frac{\partial \vec{\sigma}}{\partial r} \times \frac{\partial \vec{\sigma}}{\partial \theta} = \det \begin{bmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ \cos(\theta) & \sin(\theta) & -2\cos(\theta) - \sin(\theta) \\ -r\sin(\theta) & r\cos(\theta) & 2r\sin(\theta) - r\cos(\theta) \end{bmatrix} = (2r\sin^2(\theta) - r\sin(\theta)\cos(\theta) + 2r\cos^2(\theta) + r\sin(\theta)\cos(\theta))\vec{\imath} - (2r\sin(\theta)\cos(\theta) - r\cos^2(\theta) - 2r\sin(\theta)\cos(\theta) - r\sin^2(\theta))\vec{\jmath} + (r\cos^2(\theta) + r\sin^2(\theta))\vec{k} = 2r\vec{\imath} + r\vec{\jmath} + r\vec{k}$$ we have $\left\| \frac{\partial \vec{\sigma}}{\partial r} \times \frac{\partial \vec{\sigma}}{\partial \theta} \right\| = \sqrt{4r^2 + r^2 + r^2} = \sqrt{6}r$ and Area $$(E) = \int_{E} dS = \int_{0}^{1} \int_{0}^{2\pi} \sqrt{6}r \ d\theta \ dr = \sqrt{6}(2\pi) \left[\frac{1}{2}r^{2}\right]_{0}^{1} = \sqrt{6}\pi.$$ Alternative Solution. The ellipse E is the graph of the function f(x,y) = 2 - 2x - y over the unit disk D in the xy-plane centered at the point (1,0). Hence, $\vec{\sigma}(x,y) = x\vec{\imath} + y\vec{\jmath} + f(x,y)\vec{k}$ where $(x,y) \in D$ parametrizes the surface, and we have $$\frac{\partial \vec{\boldsymbol{\sigma}}}{\partial x} \times \frac{\partial \vec{\boldsymbol{\sigma}}}{\partial y} = \det \begin{bmatrix} \vec{\boldsymbol{\imath}} & \vec{\boldsymbol{\jmath}} & \vec{\boldsymbol{k}} \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{bmatrix} = -f_x \vec{\boldsymbol{\imath}} - f_y \vec{\boldsymbol{\jmath}} + \vec{\boldsymbol{k}} = 2\vec{\boldsymbol{\imath}} + \vec{\boldsymbol{\jmath}} + \vec{\boldsymbol{k}}.$$ If follows that $$\int_{E} dA = \int_{D} ||2\vec{\imath} + \vec{\jmath} + \vec{k}|| dA = \sqrt{6} \int_{D} dA = \sqrt{6} \operatorname{Area}(D) = \sqrt{6}\pi(1)^{2} = \sqrt{6}\pi. \quad \Box$$