
Mathematics 221 - Vector Calculus. Introduction
Instructor: Daniel Offin

Jeffrey Hall 408
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Examples of flow rates and flux

• Calgary, June 2013, Bow and Elbow rivers catastrophic flooding in and
around Calgary Alberta. On CBC it is announced that flow rate is
extremely high 19.5 meters

second
. What does this flow rate measure?

• ¡ Fukushima nuclear reactors in Japan. Levels of nuclear radiation from
contaminated groundwater 18 times higher than previously measured.
Radiation flux measured in grays or millisieverts. 1 gray = joule

second
. Ra-

dioactive and charged particles are influenced by magnetic fields, so
since magnetic flux is higher near the poles, effective dose increases in
higher lattitudes. How is this flow rate measured?

• Brightness of stars measured by light flux density. The inverse square
law states that this is proportional to the inverse square of the distance
from the star. How is this measured?

• Flux of magnetic field lines near the magnetic poles of the earth higher
than at equator. Measurement?

• heat flux density (rate of heat flow per unit time per unit area)

• current density (charge per unit time per unit area)
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Meaurement of flow of physical quantity in space

• light flux density is light energy per unit time, per unit area (electro-
magnetic energy measured in watts per unit area).

W =
joule

second
=
N ·m
s

=
kg ·m2

s3

Luminosity (measured in watts) is electromagnetic energy radiated per
unit time. To measure the luminosity of a light bulb, put a hollow
sphere around the light bulb, and measure the energy absorbed on the
surface of the sphere. The light flux (brightness) and the luminosity L
of the light bulb are related by

F =
L

Area
, brightness

watts

m2

=
L

4πR2
,

W

m2
.

Surface area of a hollow sphere is A = 4πR2. This describes the bright-
ness of stars, as the inverse square law of distance, once you determine
luminosity L.

• The key ideas contained in all these examples, is flux density of some
physical quantity which is being transported in space. This quan-
tity could be water, light energy, heat, radioactivity, electrical
charge, chemical concentration. To measure this density, we record
how the quantity ∆q passes through some surface S in space, in time
∆t. This surface has small elements of area A, and we define density
by letting this area element tend to zero.

J = lim
A→0

I

A
=
dI

dA

where J is the flux density, and I is the rate at which the transport
of quantitiy q occurs across a surface S with area element A

I = lim
∆t→0

∆q

∆t
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• To determine total flux, we need to add all the components of the flux
density, across the various area elements Ai of an entire surface S in
space (composed of many small sections or elements).

J =
∑
i

Ji∆Ai, as ∆Ai → 0.

This is a familiar operation in calculus, that of taking a Riemann sum
, which we learn about in single or multivariable calculus. But in this
case, now we need to understand how to make such a computation over
an arbitrary surface S.

• The total flux as we have defined it now reprsents the flow rate per
unit time, of the physical quantity q, across a surface S in space. To
repeat what we said earlier, this flow rate could be water or chemical
in solution, being transported. It could also be energy transported
per unit time (light, or radioactive energy), or heat energy transported
across a surface, per unit time. How would we present this surface and
how can we learn how to make such computations?

• In the case of the flooding in Calgary, we can look again at what the
CBC announced as flow rate, and try to better understand what was
being described by the rate 19.5 m

s
. In this case, the physical quantity

q represents the quantity of water transported across a boundary sur-
face in the river. This quantity q is a volume, and so is measured in
cubic meters m3. The flow rate density, measures the amount of water
which crosses this surface per unit time, per unit area! This is the Flux
density of which we spoke earlier, measured now in cubic meters per
second per square meter or m3

s·m2 = m
s

.

• This simple dimensional analysis tells us that what the CBC announcer
was trying to convey was a flux density of water crossing a boundary
surface S in the Bow river. This boundary surface is of course nothing
more than a crossection of the river. So to calculate total volume of
water crossing per second, we need to integrate the density over the
cross section S of the river. In this example, we suppose that the flux
density really is an average density, over the surface S.
How would we define an average density over a surface? How would we
compute it?
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• Amoung many questions which are raised by such considerations, we
mention one question which arises: does it matter which crossection
S we choose to make this computation? Apparently not, if between
the two crossections S and S′ there are no sources (inlets of additional
water) then the flux across each surface S and S′ would be the same.

• The physical velocity of a particle of water in the river is given by a
vector field which is a vector quantity Ṽ having magnitude (speed)
and direction at each point. This mathematical entity is one of the
basic objects we will study in this course. We assume that the student
has familiarity with the basic notions of vector algebra (addition, scalar
multiplication) and the related ideas of geometry in Euclidean space.

• For example we will be able to test the vector field Ṽ itself, to de-
termine whether there are any sources ( of water, light, radioactivity
etc. ) between two crossections S,S′. We will prove a result called the
divergence theorem, for general vector fields Ṽ and sources between
general complete surfaces S,S′. This theorem has fundamental appli-
cations in diverse areas of scientific investigation from electromagnetic
disturbance to transport of volume through space.

• We will begin our course with discussions concerning integrals over
geometric regions, and vector operations.

Multiple integrals

Before we begin our investigation of vector fields, we review the basic defi-
nition, that of the concept of definite integral over a rectangle in the plane
R2.

The rectangle R ⊂ R2 is denoted

R = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}

If we subdivide this rectangle into subrectangles Ai,j which are determined
by subdividing the intervals defining the rectangle R

a = x0 < x1 < . . . < xn = b, c = y0 < y1 < . . . < ym = d
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The double integral of the function f(x, y) over the rectangle R is∫ ∫
R

f(x, y)dA = lim
m,n→∞

i=n∑
i=1

j=m∑
j=1

f(x∗i,j, y
∗
i,j)∆A

whenever this limit exists. The function f is called integrable when this
limit exists. We can choose the points (x∗i,j, y

∗
i,j) arbitrarily within the i− jth

rectangle Ai,j.
For example we could choose the points within Ai,j to coincide with the upper
right hand point so that in this case (x∗i,j, y

∗
i,j) = (xi, yj) .

Applications

• Volume beneath the graph of f , and lying over the region R
equals the double integral

∫ ∫
R
f(x, y)dA, whenever f ≥ 0, througout

R .

• when f changes sign over the region R, we can speak of the signed
volume∫ ∫

R

f(x, y)dA =

∫ ∫
R1

f(x, y)dA−
∫ ∫

R2

f(x, y)dA = V1 − V2,

where V1 is the positive volume over the region R1 = {(x, y)|f(x, y) ≥ 0},
and V2 is the negative volume over the region R2 = {(x, y)|f(x, y) ≤ 0}.

• Average Value. When f is integrable over the region R, we have∫ ∫
R

f(x, y)dA = favg × area R.

Properties of the definite integral

•
∫ ∫

R
(f(x, y) + g(x, y))dA =

∫ ∫
R
f(x, y)dA+

∫ ∫
R
g(x, y)dA

•
∫ ∫

R
cf(x, y)dA = c

∫ ∫
R
f(x, y)dA

•
∫ ∫

R
f(x, y)dA ≥

∫ ∫
R
g(x, y)dA whenever f(x, y) ≥ g(x, y) through-

out the region R.
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