Math 227 Queen's University, Department of Mathematics

Vector Analysis, Homeworkz 3

September 2013

1. Evaluate the triple integral $\int \int \int_{\mathbf{W}} \frac{dV}{\sqrt{x^2 + y^2 + z^2}}$ where \mathbf{W} is the solid region between the upper hemispheres of two concentric spheres of radii a < b.

2.Consider the vector field $\mathbf{F}(x, y) = (-2y, 2x)$.

a. Show that the parameterized curve $(\cos(2t), \sin(2t))$ is a flow line of this vector field. Show that the family of parameterized curves $(a\cos(2t), a\sin(2t))$ are flow lines of **F**. What curve does this parameterization describe?

b. Find a vector field $\mathbf{G}(x, y)$ which is everywhere perpendicular to the field \mathbf{F} .

c. Find the l flow line of the vector field G which goes through the point (x, y), $x^2 + y^2 > 0$, at t = 0.

3. Using spherical coordinates, find the volume of the spherical cap: the solid region $x^2 + y^2 + z^2 \le 10$ which lies above the plane z = 1.