Math 227 Queen's University, Department of Mathematics

Vector Analysis, Homeworkz 4

October 2014

1. Consider the spiral curve which in polar coordinates is given by the equation $r = \theta$.

a) Find a vector parameterization for this curve in rectangluar coordinates.

b) Compute the curvature at the points of the curve where $r = \frac{\pi}{2}, \pi, \frac{3\pi}{2}$.

2. For the function $f(x, y) = 2x^2 + y^2$

a) Compute the family of flow lines for the gradient field $\vec{F}(x,y) = -\nabla f(x,y)$.

b) Sketch some of the level curves of the function f(x, y) together with some of the lines of steepest descent for this function.

3. Evaluate the integral by changing coordinates with the suggested transformation. The region **R** is the parallelogram with vertices (-1,3), (1,-3),(3,-1) and (1,5).

$$\int \int_{\mathbf{R}} (4x + 8y) dA, \qquad x = \frac{1}{4}(u+v), \qquad y = \frac{1}{4}(v-3u)$$