Math 227 Queen's University, Department of Mathematics

Vector Analysis, Homeworkz 5

October 2013

- **1.** Consider the vector field $\vec{F} = 3\vec{i} 2\vec{j} + \vec{k}$.
- **a)** Show that \vec{F} is a gradient field.
- b) Describe the equipotential surfaces of \vec{F} in words and with sketches

c) Calculate the work done by the vector field \vec{F} in moving a particle along the parameterized path $\vec{r}(t) = (2, -5, 7) + t(-2, -4, 6), -1 \le t \le 1.$

2. For the parameterized helix C, given by $\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + t\vec{k}$, on the time interval $0 \le t \le 1.25\pi$, calculate the path integral

$$\int_{\mathcal{C}} yz^2 e^{xyz^2} dx + xz^2 e^{xyz^2} dy + 2xyz e^{xyz^2} dz.$$

3. Consider the vector field $\vec{F} : \mathbb{R} \times (0, +\infty) \to \mathbb{R}^2$ given by

$$\vec{F}(x,y) = \frac{x+xy^2}{y^2}\vec{\mathbf{i}} - \frac{x^2+1}{y^3}\vec{\mathbf{j}}.$$

a) Determine whether \vec{F} is a gradient field or not, and give an explanation of your conclusion.

b) Calculate the work done in moving a particle along the curve $y = 1 + x - x^2$ from (0, 1) to (1, 1).