Math 227 Queen's University, Department of Mathematics

Vector Analysis, Homeworkz 6

October 2013

1. Calculate the area of the bounded region inside the folium of Descartes, $x^3 + y^3 = 3xy$.

a)Sketch the bounded region and show that this region has a boundary which is parameterized by the vector function $\vec{r}(t) : [0, \infty) \to \mathbb{R}^2$

$$\vec{r}(t) = \frac{3t}{1+t^3}\vec{\mathbf{i}} + \frac{3t^2}{1+t^3}\vec{\mathbf{j}}$$

b) Using this parameterization and Green's Theorem calculate the area of the bounded region.

2. Let \$\vec{F}\$ = \$(3x^2y + y^3 + e^x)\$\vec{i}\$ + \$(e^{y^2} + 12x)\$\vec{j}\$. Consider the line integral of \$\vec{F}\$ around the circle of radius a, centered at the origin and oriented counterclockwise.
a) Find the line integral for a=1.

b) For which value of a is the line integral a maximum. Give a clear explanation of your conclusion.

3. The electric field \vec{E} , at the point with position vector \vec{r} in \mathbb{R}^3 , due to a charge q at the origin is given by

$$\vec{E}(\vec{r}) = q \frac{\vec{r}}{\|\vec{r}\|^3},$$

a) Compute curl \vec{E} . Is \vec{E} a path independent vector field? Give a clear explanation

of your conclusion.

b) If possible, find a potential function for \vec{E} .