
Math 231, Introduction to Differential Equations, Fall 2011

Queen’s University, Department of Mathematics

Homework 7, Not to hand in, Solutions

1) For each system, verify that (0,0) is an equilibrium point, show that the system

is almost linear in a neighborhood, and discuss the type and stablility, by examining

the linear part. Sketch the trajectories in a neighborhood of origin.

a) dx
dt

= x− y2, dy
dt

= x− 2y + x2

b) dx
dt

= −x+ y + 2xy, dy
dt

= −4x− y + x2 − y2

a f(x, y) = x− y2 which is already in the form of a Taylor expansion in powers of

(x− 0, y − 0). Similarly the linear part at (0, 0) of g(x, y) is x− 2y. The differential

equation can be written

d

dt

 x

y

 =

 1 0

1 −2


 x

y

+

 −y
2

x2


The nonlinear part satisfies

G(x, y) =

 −y
2

x2

 , ‖G(x, y)‖
‖(x, y)‖ |

→ 0

which means that the system is almost linear at the equilibrium point (0, 0). The

theorem we studied in class tells us that the nonlinear system and the linear system

1



have the same local behaviour provided the eigenvalues of the coefficient matrix have

non 0 real parts. The eigenvalues are computed are the same as the diagonal elements

of the matrix (it is upper triangular) which are λ1 = 1, λ2 = −2. The origin is an

unstable saddle for both the linear and the nonlinear systems. The eigenvectors are

ξ1 = (3, 1)T and ξ2 = (0, 1)T . The eigenvector ξ2 is the stable direction and ξ1 is the

unstable direction. The diagram will show hyperbolas coming in the stable direction,

and going out along the unstable direction.

b f(x, y) = −x + y + 2xy which is already in the form of a Taylor expansion in

powers of (x− 0, y − 0). Similarly the linear part at (0, 0) of g(x, y) is −4x− y. The

differential equation can be written

d

dt

 x

y

 =

 −1 1

−4 −1


 x

y

+

 2xy

x2 − y2


The nonlinear part satisfies

G(x, y) =

 2xy

x2 − y2

 , ‖G(x, y)‖
‖(x, y)‖ |

→ 0

which means that the system is almost linear at the equilibrium point (0, 0). The

theorem we studied in class tells us that the nonlinear system and the linear system

have the same local behaviour provided the eigenvalues of the coefficient matrix have

non 0 real parts. The eigenvalues are 0’s of the characteristic polynomial (−1−λ)2 +
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4 = 0. The eigenvalues are complex, λ = −1±i2. The real parts are non 0. The origin

is a stable focus (spiral point) for both the linear and the nonlinear systems. The

complex eigenvector is ξ1 = (1, 2i)T = (1, 0)T + i(0, 2)T The spiral point is rotating

clockwise near the origin for both the linear and the nonlinear system.

2) For the following planar system

DE
dx

dt
= 2x2y − 3x2 − 4y,

dy

dt
= −2xy2 + 6xy

a) Determine all equilibrium points.

The equilibrium points are determined by the simultaneous equations

y(2x2 − 4) = 3x2, xy(−2y + 6) = 0

The second of the equations is easier to analyse, so either x = 0, y = 0, y = 3.

Substituting these values into the first equation we get the three equilibrium points

(0, 0), (−2, 3), (2, 3)

b) By reparameterizing the trajectories with x, find a conservation law H(x, y) for

the trajectories of this system (DE).

Eliminating the time parameter amounts to reparameterising the solution curves with

respect to x

dy
dt
dx
dt

=
dy

dx
=

−2xy2 + 6xy

y(2x2 − 4)− 3x2)

Rewriting this in terms of a differential form

(2xy2 − 6xy)dx+ (y(2x2 − 4)− 3x2)dy = 0
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Checking the condition for exactness we find that My = 4xy−6x = Nx. The equation

is exact and can be directly integrated.

F (x, y) =
∫
N(x, y)dy =

1

2
y2(2x2 − 4)− 3x2y + h(x)

Computing the partial with respect to x for this function and equating this with

M(x, y)

∂F

∂x
= 2xy2 − 6xy + h′(x) = 2xy2 − 6xy

It follows that h′(x) = 0 and the implicit solution of the reparameterised equation is

F (x, y) =
1

2
y2(2x2 − 4)− 3x2y = C

This is the conservation law for the solutions of the original differential equation.

That is the function F (x, y) is constant along the trajectories.

c) Classify the type and location of critical points which the function H(x, y) has.

We can try to see what the phase portrait of the original system is by studying the

critical points of the function F (x, y). These come from the simultaneous equations

∂F

∂x
= 2xy2 − 6xy = 0,

∂F

∂y
= y(2x2 − 4)− 3x2 = 0.

We have already analysed these solutions, there are three critical points, correspond-

ing to the equilibrium points (0, 0), (±2, 3).

To see what type these critical points are , we must use the second derivative test
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for functions of two variables. This requires that we compute the discriminant

D = ∂2F
∂x2

∂2F
∂y2 −

(
∂2F
∂x∂y

)2
for each critical point.

∂2F

∂x2
= 2y2 − 6y,

∂2F

∂y2
= 2x2 − 4,

∂2F

∂x∂y
= 4xy − 6x

We can see from calculating the discriminant D at each critical point that (0, 0) is

indeterminant (D=0) while both critical points (±2, 3) are saddles (D < 0).

d) Show that the system (DE) is almost linear in the neighborhood of each critical

point, and determine the linear part at each critical point.

The linear part at each critical point is obtained by calculating the partial derivatives

at each equilibrium. At the equilibrium (0,0)

fx(0, 0) = 0, fy(0, 0) = −4, gx(0, 0) = 0, gy(0, 0) = 0

The system is almost linear at (0,0) but the linear part has a 0 eigenvalue, and

we cannot conclude from the linear part what the nature of the equilibrium point is,

which is also reflected in the fact that the critical point at (0,0) is indeterminate. Next

the equilibrium at (±2, 3) are both saddles as can be ascertained by calculating the

linear part at each point. The systeme) Determine the eigenvalues and eigenvectors

of the linear part at each critical point.

f) Using all the information you have determined from above, sketch the phase plane

of trajectories of the system (DE).
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