Math 231, Introduction to Differential Equations, Fall 2011 Queen's University, Department of Mathematics Tutorial , Monday October 23

1) Find the general solution to the nonhomogeneous differential equation

$$L[y] = (D^2 - 4)[y] = -3e^3t + 10te^3t, \quad D = \frac{d}{dt}$$

Then find the solution to the initial value problem y(0) = 1, y'(0) = 0.

2. Suppose we consider a simple mechanical system where we attach a 4kg mass to a dampened spring system. The mass is stretched 1 meter from its equilibrium position and released with 0 velocity. We assume that the spring constant is $k = 1 \frac{\text{N}}{\text{m}}$, and the damping constant is $b = 4 \frac{\text{N}}{\text{m/s}}$

a) Using Newton's second law of motion, write the differential equation and the initial values for y(t) the displacement from equilibrium

b) Find the resulting motion of the mass (displacement from equilibrium as a function of time) corresponding to the initial value problem above.

3 Prove that the exponential shift theorem we talked about in class

$$P(D)[e^{\lambda t}y] = e^{\lambda t}P(D+\lambda)[y], \quad D = \frac{d}{dt}$$

holds when $P(D) = (D - \alpha)$ or $P(D) = (D - \alpha)(D - \beta)$. Generalise your argument

to any

$$P(D) = (D - a_1)^{m_1} \cdots (D - a_k)^{m_k}, \ a_i \in R, m_i \in N$$