Mathematics 231
Introduction to differential equations, Fall, 2009
Solutions Homework 2

1.a) The right hand side of the differential equation is f(y) = 2ty*. This function is
continuous throughout the entire t —y plane. The derivative g—g = 4ty which is continuous
throughout the entire t — y plane. The largest rectangle where the conclusions of the
existence uniqueness theorem apply would then be the entire ¢ — y plane. The existence
uniqueness theorem then states, that for any intial condition (a,b) there is a unique
solution curve in the ¢t — y plane going through that point.

b) Separating variables, % = 2tdt which integrates easily to —y~! = 2 + C. Solving for
y after substiting for the intial values to determine C,

~b' = a®+C
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where the last equation gives the values at the which the denominator of expression for
y(t) is zero. The roots of this quadratic expression determine in general three intervals
of the time axis. However only one interval contains the value ¢ = a which is essential to
determine the interval of existence of the solution y(t).

c) In particular,
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This calculation above shows how the interval of existence of the solution y(¢, a, b) depends
on the values of a, b.
d) When a = 0 from the formula we developed above, y = bt;—ﬁl which is positive when

b > 0, and —\/% <t< —1—\/%. The denominator has roots at t = i—\/%. The value t =0

must belong to the interval of existence, so this interval is —\/% <t< +\/%. When
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t approaches the endpoints of its interval of existence, the value of y — +oo. This is
consistent with the existence uniqueness theorem, since the curve leaves its "box” (which
is the infinite ¢ — y plane) as the time parameter approaches the endpoints of the interval
of existence.

2. a) The function f(y) = y(y — 1)(y — 2) is a cubic with intercepts on the y—axis at
y =0,1,2. The graph of f(y) versus y therefore looks like an s-shaped curve between its
intercepts, with slope 2 at y = 0 and y = 2, and negative on the intervalsy < 0, 1 <y < 2.
It is positive when 0 <y <1, 2 <y.
b) For the differential equation y' = f(y), the equilibrium points occur at the intercepts
of the graph of the function f(y), which in this case are y = 0,1, 2.

c)
f'(0) > 0 unstable
f(1) < 0, stable

f'(2) > 0, unstable (3)
d) phase line diagram
3 a)
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This is linear with integrating factor u = e*?. Multiplying with this factor we get
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Where we take postitive square root, if yo > 0, and take negative square root when
Yo < 0.

As t — 400, the exponential term dies off, and the asymptotic value of the solution,
independent of the intial value yy > 0 is +\/§ )

b) The equilibrium values of the differential equation are yo = 0,yg = i\/g , €>0.
When € < 0, there is only the equilibrium at yy = 0. The stability of each is determined
by the derivative f’(yo) as follows

1'(0) = ¢, unstable when € > 0, stable when € < 0
(5)
F(+ g) = €— 302 < 0, stable when 0 < €
f'(— 5) = €— 305 < 0, stable when 0 < € (6)

c) The bifurcation diagram in the € — y plane describes the equilibrium points, and
their stability as the parameter € passes through 0. First the number of equilibrim points
changes from one (e < 0) to three (e > 0). The equilibrium point at y = 0 changes from
stable (¢ < 0) to unstable (¢ > 0) and the stable equilibria at y = 4,/< are born at € = 0
and grow as a parabola over the y—axis, opening out along the positive e-axis. This type
of bifurcation diagram looks like a pitchfork, and is also called a pitchfork bifurcation.



