
Mathematics 237
Introduction to differential equations, Fall, 2011

Solutions Homework 2

1 Consider the differential equation and intitial value problem

6xydx+
(
3x2 + 4 cos(y) sin(y)

)
dy = 0, y(1) =

π

4

a) We rewrite the differential equation

dy

dx
=

−6xy

(3x2 + 4 cos(y) sin(y))
= f(x, y)

∂f

∂y
=
−6x (3x2 + 4 cos(y) sin(y)) + 24xy cos(2y)

(3x2 + 4 cos(y) sin(y))2

The denominator of both f(x, y) and ∂f
∂y

are continuous functions which do not vanish for
the pair of initial values x = 1, y = π

4
. Therefore they dont vanish in some rectangle in

the x− y plane which contains this point, and by the existence uniqueness theorem, the
initial value problem has a unique solution in some interval containing x = 1.
b) The equation is exact, since

∂6xy

∂y
= 6x =

∂ (3x2 + 4 cos(y) sin(y))

∂x

We look for the general solution as the level set of some function F (x, y)

F (x, y) =

∫
6xydx+ h(y)

= 3x2y + h(y)

h′(y) =
(
3x2 + 4 cos(y) sin(y)

)
− 3x2

= 2 sin(2y)

h(y) = − cos(2y)

F (x, y) = 3x2y − cos(2y)

F (1,
π

4
) =

3π

4
(1)

The unique solution therefore coincides with the level set 3x2y − cos(2y) = 3π
4

.

2.a) The right hand side of the differential equation is f(y) = 2ty2. This function is
continuous throughout the entire t−y plane. The derivative ∂f

∂y
= 4ty which is continuous

throughout the entire t − y plane. The largest rectangle where the conclusions of the
existence uniqueness theorem apply would then be the entire t− y plane. The existence
uniqueness theorem then states, that for any intial condition (a, b) there is a unique
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solution curve in the t− y plane going through that point.
b) Separating variables, dy

y2
= 2tdt which integrates easily to −y−1 = t2 + C. Solving for

y after substiting for the intial values to determine C,

−b−1 = a2 + C

C = −b−1 − a2

y =
−1

t2 − b−1 − a2

y(t, a, b) =
−b

bt2 − 1− ba2

bt2 = 1 + ba2, (2)

where the last equation gives the values at the which the denominator of expression for
y(t) is zero. The roots of this quadratic expression determine in general three intervals
of the time axis. However only one interval contains the value t = a which is essential to
determine the interval of existence of the solution y(t).
c) In particular,

b = 0 ⇒ t ∈ R

b > 0 ⇒ −
√

1 + ba2

b
< a < +

√
1 + ba2

b

b > 0 ⇒ −
√

1 + ba2

b
< t < +

√
1 + ba2

b

b <
−1

a2
⇒ t ∈ R

−1

a2
< b < 0 ⇒ t ∈ R (3)

This calculation above shows how the interval of existence of the solution y(t, a, b) depends
on the values of a, b.
d) When a = 0 from the formula we developed above, y = −b

bt2−1
which is positive when

b > 0, and −
√

1
b
< t < +

√
1
b
. The denominator has roots at t = ±

√
1
b
. The value t = 0

must belong to the interval of existence, so this interval is −
√

1
b
< t < +

√
1
b
. When

t approaches the endpoints of its interval of existence, the value of y → +∞. This is
consistent with the existence uniqueness theorem, since the curve leaves its ”box” (which
is the infinite t− y plane) as the time parameter approaches the endpoints of the interval
of existence.

3. a) Multiply the equation by h(x), and check the condition for exactness

h(x)
(
3yx2 + 2xy + y3

)
dx+ h(x)

(
x2 + y2

)
dy = 0
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∂

∂y
h(x)

(
3yx2 + 2xy + y3

)
=

∂

∂x
h(x)

(
x2 + y2

)
h(x)

(
3x2 + 2x+ 3y2

)
= h′(x)

(
x2 + y2

)
+ h(x)2x

3h(x)
(
x2 + y2

)
= h′(x)

(
x2 + y2

)
3h(x) = h′(x)

h(x) = e3x (now multiply equation bye3x)

e3x
(
3yx2 + 2xy + y3

)
dx+ e3x

(
x2 + y2

)
= 0 (4)

which is exact as can be checked by usual method.

b) We construct the function F (x, y) which satisfies

∂F

∂x
= e3x

(
3yx2 + 2xy + y3

)
,
∂F

∂y
= e3x

(
x2 + y2

)
This can be done by integrating first with respect to x or with respect to y. I will integrate
with respect to y since this looks much easier....

F (x, y) =

∫
e3x
(
x2 + y2

)
dy + v(x)

= e3x
(
x2y +

1

3
y3

)
+ v(x) (now differentiate with x)

∂F

∂x
= 3e3x

(
x2y +

1

3
y3

)
+ e3x2xy + v′(x) (now replace

∂F

∂x
)

(6)

e3x
(
3x2y + 2xy + y3

)
= 3e3x

(
x2y +

1

3
y3

)
+ e3x2xy + v′(x)

from which we can now observe that v′(x) = 0. Thus we have the general solution

F (x, y) = e3x
(
x2y +

1

3
y3

)
= C

c) To construct the critical points of the function F (x, y), we need consider the simula-
neous equations

∂F

∂x
= 3e3x

(
x2y +

1

3
y3

)
+ e3x2xy = 0

∂F

∂y
= e3x

(
x2 + y2

)
= 0

3



The second equation clearly has the only solution x = y = 0 which is also a solution of
the first equation. Therefore, there is a single critical point of F which is at the origin.
The level curves of F can be seen using the Maple command contourplot, or we can apply
the second derivative test to see what nature the critical point has. The level curves can
be sketched from this information as well. For this we must calculate the discriminant

D =
∂2F

∂x2

∂2F

∂y2
−
(
∂2F

∂x∂y

)2

In this example D < 0 which indicates that the origin is a saddle crtical point with two
branches of the 0 level curve intersecting at (0, 0) and the contour lines nearby looking
like pieces of hyperbolas.
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