
Mathematics 280

Advanced Calculus, Fall 2016

Solutions to Homework 2

(Q1) Part (a): Notice that |ab| = |a||b|, a2 = |a|2, and b2 = |b|2. Thus,

2|ab| ≤ a2 + b2 ⇔ 2|a||b| ≤ |a|2 + |b|2

⇔ 0 ≤ |a|2 + |b|2 − 2|a||b|

⇔ 0 ≤ (|a| − |b|)2

which is clearly true for all real numbers a, b, since the right hand side cannot be negative.

Part (b): Let 0 < ‖(x, y)‖ < δ, so that
√
x2 + y2 < δ, which is equivalent to x2 + y2 < δ2. Keeping this

in mind, we have

|f(x, y)| =
∣∣∣∣xy(x2 − y2)

x2 + y2

∣∣∣∣
=

∣∣∣∣ xy

x2 + y2

∣∣∣∣ |x2 − y2|
=
|xy|

x2 + y2
|x2 − y2|

≤ |xy|
x2 + y2

(|x2|+ |y2|) by the triangle inequality.

Applying part (a), we see that |xy| ≤ x2+y2

2 and so |xy|
x2+y2 ≤

1
2 . Since |x2| + |y2| = x2 + y2 < δ2, we have

|f(x, y)| < δ2

2 .

It is clear that f(x, y) is continuous at any (x, y) 6= (0, 0). To conclude that f(x, y) is continuous on its

domain, we must check continuity at (x, y) = (0, 0). Namely, let ε > 0 and set δ =
√

2ε. Suppose that (x, y)

satisfies ‖(x, y) − (0, 0)‖ = ‖(x, y)‖ < δ. By the previous calculation, |f(x, y)| < δ2

2 = 2ε
2 = ε, and we are

done.

Part (c): We compute fx(x, y) first. By definition,

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim
h→0

f(h, 0)− 0

h
= lim
h→0

0
h2

h
= lim
h→0

0 = 0.
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Away from (0, 0) we may apply the rules of differentiation. Letting ∂x = ∂
∂x , we have

fx(x, y) =

(
∂x
(
xy(x2 − y2)

))
(x2 + y2)− xy(x2 − y2)

(
∂x(x2 + y2)

)
(x2 + y2)2

=

(
y(x2 − y2) + xy(2x)

)
(x2 + y2)− xy(x2 − y2)(2x)

(x2 + y2)2

=
(3x2y − y3)(x2 + y2)− 2x2y(x2 − y2)

(x2 + y2)2

=
(3x4y − x2y3 + 3x2y3 − y5)− 2x4y + 2x2y3

(x2 + y2)2

=
x4y + 4x2y3 − y5

(x2 + y2)2

=
y(x4 + 4x2y2 − y4)

(x2 + y2)2

=
y
(
(x2 + y2)(x2 − y2) + 4x2y2

)
(x2 + y2)2

=
y(x2 − y2)

(x2 + y2)
+

4x2y3

(x2 + y2)2
.

By a similar computation to above, we find fy(0, 0) = 0. To get fy(x, y) at other points, notice that

f(x, y) = −f(y, x). Thus, fy(x, y) = ∂y
(
− f(y, x)

)
= −fy(y, x). In other words, we can get fy(x, y) from the

big computation we just did, by switching the role of x and y, and multiplying by −1. We end up with

fy(x, y) = −x(y2 − x2)

(x2 + y2)
− 4y2x3

(x2 + y2)2

=
x(x2 − y2)

(x2 + y2)
− 4x3y2

(x2 + y2)2
.

Part (d): From the expressions given above, we see that fx(x, y) and fy(x, y) are continuous away from

(0, 0). We check continuity at (0, 0).
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Let ε > 0 and set δ =
√

ε
2 . Then, for any 0 < ‖(x, y)‖ < δ we have x2 + y2 < ε

2 , and we compute

|fx(x, y)| =
∣∣∣∣y(x2 − y2)

(x2 + y2)
+

4x2y3

(x2 + y2)2

∣∣∣∣
≤
∣∣∣∣y(x2 − y2)

(x2 + y2)

∣∣∣∣+

∣∣∣∣ 4x2y3

(x2 + y2)2

∣∣∣∣
≤
∣∣∣∣ y

(x2 + y2)

∣∣∣∣ (|x2|+ |y2|) +

∣∣∣∣ 4x2y3

(x2 + y2)2

∣∣∣∣
= |y|+ 4|y|

∣∣∣∣ xy

x2 + y2

∣∣∣∣2
≤ |y|+ 4|y|(1

2
)2 by part (a)

= 2|y|

≤ 2(x2 + y2)

< 2δ2 = 2(
ε

2
) = ε.

Hence, we see that fx(x, y) is continuous at (0, 0). The same method shows that fy(x, y) is also continuous

at (0, 0). Since the partial derivatives of f exist and are continuous, we may conclude that f is differentiable

at (0, 0).

Part (e): We compute from the definition

fxy(0, 0) = lim
h→0

fx(0, 0 + h)− fx(0, 0)

h

= lim
h→0

fx(0, h)− 0

h

= lim
h→0

h(02−h2)
(02+h2) + 4(0)2h3

(02+h2)2

h

= lim
h→0

−h3

h2 + 0

h

= lim
h→0

−h
h

= −1.
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Similarly, we compute

fyx(0, 0) = lim
h→0

fy(0 + h, 0)− fy(0, 0)

h

= lim
h→0

fy(h, 0)− 0

h

= lim
h→0

h(h2−02)
(h2+02) −

4h302

(h2+02)2

h

= lim
h→0

h3

h2 − 0

h
= 1.

(Q2) We wish to show that x2 ∂p∂x = y2 ∂p∂y . Denote F (x, y) = x+y
xy , which defines a differentiable function

F : R2 \ {0} → R, and gives p = q ◦ F. We compute

∇p = q′(F (x, y)) · ∇F by the chain rule, which is equivalent to(
∂p

∂x

∂p

∂y

)
= q′(F (x, y)) ·

(
−1

x2
−1

y2

)
,

which shows that x2 ∂p∂x = −q′(F (x, y)) = y2 ∂p∂y .
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