Mathematics 280

Advanced Calculus, Fall 2016

Solutions to Homework 2

(Q1) Part (a): Notice that $|ab| = |a||b|, a^2 = |a|^2$, and $b^2 = |b|^2$. Thus,

$$\begin{aligned} 2|ab| &\leq a^2 + b^2 \Leftrightarrow 2|a||b| \leq |a|^2 + |b|^2 \\ &\Leftrightarrow 0 \leq |a|^2 + |b|^2 - 2|a||b| \\ &\Leftrightarrow 0 \leq (|a| - |b|)^2 \end{aligned}$$

which is clearly true for all real numbers a, b, since the right hand side cannot be negative.

Part (b): Let $0 < ||(x,y)|| < \delta$, so that $\sqrt{x^2 + y^2} < \delta$, which is equivalent to $x^2 + y^2 < \delta^2$. Keeping this in mind, we have

$$\begin{split} |f(x,y)| &= \left| \frac{xy(x^2 - y^2)}{x^2 + y^2} \right| \\ &= \left| \frac{xy}{x^2 + y^2} \right| |x^2 - y^2| \\ &= \frac{|xy|}{x^2 + y^2} |x^2 - y^2| \\ &\leq \frac{|xy|}{x^2 + y^2} (|x^2| + |y^2|) \text{ by the triangle inequality} \end{split}$$

Applying part (a), we see that $|xy| \leq \frac{x^2+y^2}{2}$ and so $\frac{|xy|}{x^2+y^2} \leq \frac{1}{2}$. Since $|x^2| + |y^2| = x^2 + y^2 < \delta^2$, we have $|f(x,y)| < \frac{\delta^2}{2}$.

It is clear that f(x, y) is continuous at any $(x, y) \neq (0, 0)$. To conclude that f(x, y) is continuous on its domain, we must check continuity at (x, y) = (0, 0). Namely, let $\epsilon > 0$ and set $\delta = \sqrt{2\epsilon}$. Suppose that (x, y) satisfies $||(x, y) - (0, 0)|| = ||(x, y)|| < \delta$. By the previous calculation, $|f(x, y)| < \frac{\delta^2}{2} = \frac{2\epsilon}{2} = \epsilon$, and we are done.

Part (c): We compute $f_x(x, y)$ first. By definition,

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{f(h,0) - 0}{h} = \lim_{h \to 0} \frac{\frac{0}{h^2}}{h} = \lim_{h \to 0} 0 = 0.$$

Away from (0,0) we may apply the rules of differentiation. Letting $\partial_x = \frac{\partial}{\partial x}$, we have

$$f_x(x,y) = \frac{\left(\partial_x \left(xy(x^2 - y^2)\right)\right)(x^2 + y^2) - xy(x^2 - y^2)\left(\partial_x (x^2 + y^2)\right)}{(x^2 + y^2)^2}$$

$$= \frac{\left(y(x^2 - y^2) + xy(2x)\right)(x^2 + y^2) - xy(x^2 - y^2)(2x)}{(x^2 + y^2)^2}$$

$$= \frac{\left(3x^2y - y^3\right)(x^2 + y^2) - 2x^2y(x^2 - y^2)}{(x^2 + y^2)^2}$$

$$= \frac{\left(3x^4y - x^2y^3 + 3x^2y^3 - y^5\right) - 2x^4y + 2x^2y^3}{(x^2 + y^2)^2}$$

$$= \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}$$

$$= \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$

$$= \frac{y((x^2 + y^2)(x^2 - y^2) + 4x^2y^2)}{(x^2 + y^2)^2}$$

$$= \frac{y(x^2 - y^2)}{(x^2 + y^2)} + \frac{4x^2y^3}{(x^2 + y^2)^2}.$$

By a similar computation to above, we find $f_y(0,0) = 0$. To get $f_y(x,y)$ at other points, notice that f(x,y) = -f(y,x). Thus, $f_y(x,y) = \partial_y (-f(y,x)) = -f_y(y,x)$. In other words, we can get $f_y(x,y)$ from the big computation we just did, by switching the role of x and y, and multiplying by -1. We end up with

$$f_y(x,y) = -\frac{x(y^2 - x^2)}{(x^2 + y^2)} - \frac{4y^2x^3}{(x^2 + y^2)^2}$$
$$= \frac{x(x^2 - y^2)}{(x^2 + y^2)} - \frac{4x^3y^2}{(x^2 + y^2)^2}.$$

Part (d): From the expressions given above, we see that $f_x(x, y)$ and $f_y(x, y)$ are continuous away from (0, 0). We check continuity at (0, 0).

Let $\epsilon > 0$ and set $\delta = \sqrt{\frac{\epsilon}{2}}$. Then, for any $0 < \|(x,y)\| < \delta$ we have $x^2 + y^2 < \frac{\epsilon}{2}$, and we compute

$$\begin{aligned} |f_x(x,y)| &= \left| \frac{y(x^2 - y^2)}{(x^2 + y^2)} + \frac{4x^2y^3}{(x^2 + y^2)^2} \right| \\ &\leq \left| \frac{y(x^2 - y^2)}{(x^2 + y^2)} \right| + \left| \frac{4x^2y^3}{(x^2 + y^2)^2} \right| \\ &\leq \left| \frac{y}{(x^2 + y^2)} \right| (|x^2| + |y^2|) + \left| \frac{4x^2y^3}{(x^2 + y^2)^2} \right| \\ &= |y| + 4|y| \left| \frac{xy}{x^2 + y^2} \right|^2 \\ &\leq |y| + 4|y| (\frac{1}{2})^2 \text{ by part (a)} \\ &= 2|y| \\ &\leq 2(x^2 + y^2) \\ &< 2\delta^2 = 2(\frac{\epsilon}{2}) = \epsilon. \end{aligned}$$

Hence, we see that $f_x(x, y)$ is continuous at (0, 0). The same method shows that $f_y(x, y)$ is also continuous at (0, 0). Since the partial derivatives of f exist and are continuous, we may conclude that f is differentiable at (0, 0).

Part (e): We compute from the definition

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,0+h) - f_x(0,0)}{h}$$
$$= \lim_{h \to 0} \frac{f_x(0,h) - 0}{h}$$
$$= \lim_{h \to 0} \frac{\frac{h(0^2 - h^2)}{(0^2 + h^2)} + \frac{4(0)^2 h^3}{(0^2 + h^2)^2}}{h}$$
$$= \lim_{h \to 0} \frac{\frac{-h^3}{h^2} + 0}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h} = -1.$$

Similarly, we compute

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(0+h,0) - f_y(0,0)}{h}$$
$$= \lim_{h \to 0} \frac{f_y(h,0) - 0}{h}$$
$$= \lim_{h \to 0} \frac{\frac{h(h^2 - 0^2)}{(h^2 + 0^2)} - \frac{4h^3 0^2}{(h^2 + 0^2)^2}}{h}$$
$$= \lim_{h \to 0} \frac{\frac{h^3}{h^2} - 0}{h} = 1.$$

(Q2) We wish to show that $x^2 \frac{\partial p}{\partial x} = y^2 \frac{\partial p}{\partial y}$. Denote $F(x, y) = \frac{x+y}{xy}$, which defines a differentiable function $F : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$, and gives $p = q \circ F$. We compute

$$\nabla p = q'(F(x,y)) \cdot \nabla F \text{ by the chain rule, which is equivalent to}$$
$$\begin{pmatrix} \frac{\partial p}{\partial x} & \frac{\partial p}{\partial y} \end{pmatrix} = q'(F(x,y)) \cdot \begin{pmatrix} -1 & -1 \\ x^2 & y^2 \end{pmatrix},$$

which shows that $x^2 \frac{\partial p}{\partial x} = -q'(F(x,y)) = y^2 \frac{\partial p}{\partial y}.$