1 (6.2.5, p. 388). (a) Use Green's theorem to calculate the line integral

$$\oint_C y^2 dx + x^2 dy,$$

where C is the path formed by the square with vertices (0,0), (1,0)(0,1) and (1,1) oriented counterclockwise.

(b) Verify your answer to part (a) by calculating the line integral directly.

Solution. (a) Let D be the square enclosed by the path C. By Green's theorem, we have

$$\oint_C y^2 dx + x^2 dy = \iint_D \left(\frac{\partial x^2}{\partial x} - \frac{\partial y^2}{\partial y} \right) dA = \iint_D (2x - 2y) dA$$
$$= \int_0^1 \int_0^1 (2x - 2y) \, dx \, dy = \int_0^1 \left[x^2 - 2xy \right]_0^1 \, dy = \int_0^1 1 - 2y \, dy = 0.$$

(b) Let C_1 , C_2 , C_3 and C_4 be the four sides of the square traversed counterclockwise, with C_1 being the side joining (0,0) and (1,0). Write $\mathbf{F}(x,y) = (y^2, x^2)$. We can parametrize the C_i as follows

i	$\mathbf{x_i}(t)$	$\mathbf{x}'_{\mathbf{i}}(t)$	$\mathbf{F}(\mathbf{x}_{\mathbf{i}}(t))$	$\mathbf{F}(\mathbf{x}_{\mathbf{i}}(t)) \cdot \mathbf{x}'_{\mathbf{i}}(t)$
1	$(t,0) \left(0 \le t \le 1\right)$	(1,0)	$(0, t^2)$	0
2	$(1,t) \left(0 \le t \le 1\right)$	(0,1)	$(t^2, 1)$	1
3	$(1 - t, 1) (0 \le t \le 1)$	(-1,0)	$(1, (1-t)^2)$	-1
4	$(0, 1 - t) (0 \le t \le 1)$	(0, -1)	$((1-t)^2, 0)$	0

Then

$$\oint_C y^2 dx + x^2 dy = \sum_{i=1}^4 \int_{C_i} \mathbf{F} \cdot d\mathbf{s} = \int_0^1 0 + 1 - 1 + 0 \, dt = 0,$$

as before.

2 (6.2.7, p. 389). Evaluate

$$\oint_C (x^2 - y^2) \, dx + (x^2 + y^2) \, dy,$$

where C is the boundary of the square with vertices (0,0), (1,0)(0,1) and (1,1) oriented clockwise. Use whatever method of evaluation seems appropriate.

Solution.

Method 1 (Brute force calculation). Let C_1 , C_2 , C_3 and C_4 be the four sides of the square traversed *clockwise*, with C_1 being the side joining (0,0) and (0,1). Write $\mathbf{F}(x,y) = (x^2 - y^2, x^2 + y^2)$. We can parametrize the C_i as follows

i	$\mathbf{x_i}(t)$	$\mathbf{x}'_{\mathbf{i}}(t)$	$\mathbf{F}(\mathbf{x_i}(t))$	$\mathbf{F}(\mathbf{x_i}(t)) \cdot \mathbf{x'_i}(t)$
1	$(0,t) \left(0 \le t \le 1\right)$	(0,1)	$(-t^2, t^2)$	t^2
2	$(t,1) \left(0 \le t \le 1\right)$	(1,0)	$(t^2 - 1, t^2 + 1)$	$t^2 - 1$
3	$(1, 1 - t) (0 \le t \le 1)$	(0, -1)	$(1 - (1 - t)^2, 1 + (1 - t)^2)$	$-1 - (1 - t)^2$
4	$(1 - t, 0) (0 \le t \le 1)$	(-1,0)	$((1-t)^2, (1-t)^2)$	$-(1-t)^2$

Then

$$\oint_C \mathbf{F} \cdot d\mathbf{s} = \sum_{i=1}^4 \int_{C_i} \mathbf{F} \cdot d\mathbf{s} = \int_0^1 \left(t^2 + t^2 - 1 - 1 - (1-t)^2 - (1-t)^2 \right) dt$$
$$= \int_0^1 \left(2t^2 - 2 - 2(1-2t+t^2) \right) dt = \int_0^1 \left(-4 + 4t \right) dt = 4\left(-1 + \frac{1}{2} \right) = -2.$$

Method 2 (Green's theorem). Because the path C is oriented clockwise, we cannot immediately apply Green's theorem, as the region bounded by the path appears on the right-hand side as we traverse the path C (cf. the statement of Green's theorem on p. 381). However, we know that if we let \mathbf{x} be a clockwise parametrization of C and \mathbf{y} an orientation-reversing (that is, counterclockwise) reparametrization, then we have

$$\int_{\mathbf{y}} \mathbf{F} \cdot d\mathbf{s} = -\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}.$$

(cf. theorem 1.5, p. 371 — the proof involves simply the single-variable chain-rule). Now, letting \tilde{C} be the path C with the counterclockwise orientation and D be the square enclosed by C (and \tilde{C}), we have by Green's theorem

$$\oint_{\tilde{C}} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} \left(\frac{\partial (x^2 + y^2)}{\partial x} - \frac{\partial (x^2 - y^2)}{\partial y} \right) dA = \iint_{D} (2x + 2y) dA$$
$$= \int_{0}^{1} \int_{0}^{1} (2x + 2y) dx dy = \int_{0}^{1} \left[x^2 + 2xy \right]_{0}^{1} dy = \int_{0}^{1} 1 + 2y dy = 2.$$

Thus,

$$\oint_C \mathbf{F} \cdot d\mathbf{s} = -\oint_{\tilde{C}} \mathbf{F} \cdot d\mathbf{s} = -2,$$

as before.

3 (6.2.8, p. 389). Use Green's theorem to find the work done by the vector field

 $\mathbf{F} = (4y - 3x)\mathbf{i} + (x - 4y)\mathbf{j}$

on a particle as the particle moves counterclockwise once around the ellipse $x^2 + 4y^2 = 4$.

Solution. Let C be the boundary of the ellipse, oriented counterclockwise, and E be the ellipse. Applying Green's theorem, we have

$$W = \oint_C (4y - 3x) \, dx + (x - 4y) \, dy = \iint_E (1 - 4) \, dA = -3 \iint_E dA = -3 \times \text{Area}(E).$$

But the area of an ellipse with the semi-major and semi-minor axes having lengths a and b, respectively, is $ab \pi$. Thus, $W = -3(2 \cdot 1 \cdot \pi) = -6\pi$.