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1 (6.2.5, p. 388). (a) Use Green’s theorem to calculate the line integral∮
C

y2dx+ x2dy,

where C is the path formed by the square with vertices (0, 0), (1, 0) (0, 1) and (1, 1)
oriented counterclockwise.

(b) Verify your answer to part (a) by calculating the line integral directly.

Solution. (a) Let D be the square enclosed by the path C. By Green’s theorem, we have∮
C

y2dx+ x2dy =

∫∫
D

(
∂x2

∂x
− ∂y2

∂y

)
dA =

∫∫
D

(2x− 2y) dA

=

∫ 1

0

∫ 1

0

(2x− 2y) dxdy =

∫ 1

0

[
x2 − 2xy

]1
0
dy =

∫ 1

0

1− 2y dy = 0.

(b) Let C1, C2, C3 and C4 be the four sides of the square traversed counterclockwise,
with C1 being the side joining (0, 0) and (1, 0). Write F(x, y) = (y2, x2). We can
parametrize the Ci as follows

i xi(t) x′
i(t) F(xi(t)) F(xi(t)) · x′

i(t)
1 (t, 0) (0 ≤ t ≤ 1) (1, 0) (0, t2) 0
2 (1, t) (0 ≤ t ≤ 1) (0, 1) (t2, 1) 1
3 (1− t, 1) (0 ≤ t ≤ 1) (−1, 0) (1, (1− t)2) −1
4 (0, 1− t) (0 ≤ t ≤ 1) (0,−1) ((1− t)2, 0) 0

Then ∮
C

y2dx+ x2dy =
4∑

i=1

∫
Ci

F · ds =
∫ 1

0

0 + 1− 1 + 0 dt = 0,

as before.

2 (6.2.7, p. 389). Evaluate ∮
C

(x2 − y2) dx+ (x2 + y2) dy,

where C is the boundary of the square with vertices (0, 0), (1, 0) (0, 1) and (1, 1) oriented
clockwise. Use whatever method of evaluation seems appropriate.

Solution.

Method 1 (Brute force calculation). Let C1, C2, C3 and C4 be the four sides of the square
traversed clockwise, with C1 being the side joining (0, 0) and (0, 1). Write F(x, y) =
(x2 − y2, x2 + y2). We can parametrize the Ci as follows

i xi(t) x′
i(t) F(xi(t)) F(xi(t)) · x′

i(t)
1 (0, t) (0 ≤ t ≤ 1) (0, 1) (−t2, t2) t2

2 (t, 1) (0 ≤ t ≤ 1) (1, 0) (t2 − 1, t2 + 1) t2 − 1
3 (1, 1− t) (0 ≤ t ≤ 1) (0,−1) (1− (1− t)2, 1 + (1− t)2) −1− (1− t)2

4 (1− t, 0) (0 ≤ t ≤ 1) (−1, 0) ((1− t)2, (1− t)2) −(1− t)2
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Then∮
C

F · ds =
4∑

i=1

∫
Ci

F · ds =
∫ 1

0

(
t2 + t2 − 1− 1− (1− t)2 − (1− t)2

)
dt

=

∫ 1

0

(
2t2 − 2− 2(1− 2t+ t2)

)
dt =

∫ 1

0

(−4 + 4t) dt = 4

(
−1 +

1

2

)
= −2.

Method 2 (Green’s theorem). Because the path C is oriented clockwise, we cannot im-
mediately apply Green’s theorem, as the region bounded by the path appears on the
right-hand side as we traverse the path C (cf. the statement of Green’s theorem on p.
381). However, we know that if we let x be a clockwise parametrization of C and y an
orientation-reversing (that is, counterclockwise) reparametrization, then we have∫

y

F · ds = −
∫
x

F · ds.

(cf. theorem 1.5, p. 371 — the proof involves simply the single-variable chain-rule).
Now, letting C̃ be the path C with the counterclockwise orientation and D be the square
enclosed by C (and C̃), we have by Green’s theorem∮

C̃

F · ds =
∫∫

D

(
∂(x2 + y2)

∂x
− ∂(x2 − y2)

∂y

)
dA =

∫∫
D

(2x+ 2y) dA

=

∫ 1

0

∫ 1

0

(2x+ 2y) dxdy =

∫ 1

0

[
x2 + 2xy

]1
0
dy =

∫ 1

0

1 + 2y dy = 2.

Thus, ∮
C

F · ds = −
∮
C̃

F · ds = −2,

as before.

3 (6.2.8, p. 389). Use Green’s theorem to find the work done by the vector field

F = (4y − 3x)i+ (x− 4y)j

on a particle as the particle moves counterclockwise once around the ellipse x2+4y2 = 4.

Solution. Let C be the boundary of the ellipse, oriented counterclockwise, and E be the
ellipse. Applying Green’s theorem, we have

W =

∮
C

(4y − 3x) dx+ (x− 4y) dy =

∫∫
E

(1− 4) dA = −3

∫∫
E

dA = −3× Area(E).

But the area of an ellipse with the semi-major and semi-minor axes having lengths a and
b, respectively, is ab π. Thus, W = −3(2 · 1 · π) = −6π.


