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1 (7.1.7, p. 418). Let S be the surface parametrized by x = scost, y = ssint, z = s
where s >0, 0 <t < 2m.

(a) At what points is S smooth? Find an equation for the tangent plane at thet point

(1,4/3,4).
(b) Describe S by an equation of the form z = f(x,y).
(c) Using your answer in part (c), discuss whether S has a tangent plane at every point.

Solution. (a) Write X(s,t) = (scost, ssint, s?). It is clear that X is everywhere infinitely

differentiable as a function R? — R3, so to check the points where S is smooth we

only need to find points where the normal vector to S given by %—f x X T, xT,

_ ot
1S nonzero.

Computing, we find

T, = (cost,sint, 2s)
T, = (—ssint, scost,0)
T, x T, = —2s°costi— 2s%sintj + sk.

Clearly, T, x T; = 0 whenever s = 0 and nonzero otherwise. When s = 0, we have
X(0,t) = (0,0,0). Therefore, S is smooth everywhere but the origin.

The preimage of (1,v/3,4) is (2,Z). By above, the normal to S at (1,v/3,4) is

T, x Ty(2,5) = (=2-22-1,-2.22. 8 9) = (—4,-4/3,2) = —2-(2,2V/3,-1).
Therefore, the tangent plane at our point is given by the equation

2(z — 1) +2V3(y — V3) — ( — 4) = 0.

(b) We have 22 + 32 = s?cos?t + s?sin’t = s%(cos?t + sin?t) = s? = 2, which gives the
desired equation (taking f(z,y) = 2 + y?).

(c) We see that f(z,y) is everywhere infinitely differentiable. Regarding S now as the
graph of f(x,y), we then have that S has a tangent plane at every point. Let’s find
its equation. We have

fe(z,y) =22 and f,(2,y) =2y,

So that the equation of a tangent plane to S at the point (a, b) is given by
z = f(a,b) + fu(a,b)(x — a) + f,(a,b)(y — b) = a* + b* + 2a(x — a) + 2b(y — b).

In particular, taking (a,b) = (0,0), the tangent plane to S at (0,0,0) is defined by
the equation
z = 0.

Remark. Taking (a,b) = (1,v/3), the tangent plane to S at (1,1/3,4) is defined by
the equation
z=14+3+2(x—1)+2V3(y — V3).

We see that this is the same equation as part (a), so that our two methods give
consistent answers when they both apply.
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Remark. This exercise gives an example of a surface S with a ‘non-smooth point’ p
where a tangent plane to S at p nevertheless exists.

2 (7.1.9, p. 418). Verify that for the standard torus T (cf. p. 408) the s-coordinate curve,
when t = tg, is a circle of radius a + bcosty.

Solution. The torus T is parametrized by

x = (a+bcost)coss
y = (a+bcost)sins
z = bsint

0<s,t<2m,
a, b positive constants with a > b

Therefore, the s-coordinate curve for t =t is
s — ((a+ bcosty) cos s, (a+ bsinty) sin s, bsinty).

Note that the z-coordinate is constant for all s. Thus, the trace of the curve is contained
in a vertical translate of the zy-plane. Now, computing the sum of squares of the first
two coordinates, we have

(a+ bcosty)? cos? s + (a + beosty)?sin® s = (a + beosty)?.

This is the equation of a circle of radius (a + bcosty).

3 (7.2.2, p. 438). Let D = {(s,t)|s* +t* < 1,8 > 0,¢t > 0} and let X : D — R? be
defined by X(s,t) = (s +t,s —t,st).

(a) Determine [[y fdS, where f(x,y,z) = 4.
(b) Find the value of [[y F -dS, where F = zi+ yj + zk.

Solution. Before computing the two integrals, let’s find the normal vectors to S. We have

TS = (1717t)7
T, = (17_175)7
N=T,xT;=(s+tt—s,—2) and

IN(s,0)[| = /(s + )2+ (t — )2 +4=V22 + 212 + 4 = /252 + 12 4 2.
(a) We have

J[ras = [ soct.o) NG dsie = [[ avavEr ez,

Converting the integral to polar coordinates, the above becomes

w/2 pl
2\/5/ / 212 + 2 rdrdd.
0 0

Using the change of variable u = r? 4+ 2, du = 2rdr, our integral is

2\/5/;/2 /23 Vadudd =22 - g : Eu?’/QE = V21(2V/3 — %\/5).
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(b) We have

//DF(X(S,t))-N(s,t)dsdt—//(3+t73_t’3t).(S_i_t’t_S?_Q)det
// (s +1)? — (s —t)? — 2st dsdt

= // (82 + 1% 4 2st) — (5% + t* — 2st) — 2st dsdt
D

:// 2st dsdt
D

Converting to polar coordinates, we have

1 w/2
/ / 2(r cos0)(rsin 0) rdrdf = (/ 7 dr) (/ 2008051n9d0>
0 0

1 [m/? 171 HE|
:—/ sin20df = — | —= cos 20 = —.
4 J 4] 2 , 4

4 (7.2.3, p.438). Find the flur of F = xi+ yj + zk across the surface S consisting of the
triangular region S of the plane 2x — 2y + z = 2 that is cut out by the coordinate planes.
Use an upward-pointing normal to orient S.

Solution. We can read the normal to the plane 2x — 2y + 2z = 2 from its equation: we have
N = (2,—2,1) as the upward-pointing normal and hence n = %N as the upward-pointing
unit normal. Our next task is to parametrize the surface S. One way to do this is as
follows.

First, we find the three vertices of S. Intersecting S with the plane z = 0 gives
the line 2x — 2y = 2, with z-intercept (1,0,0) and y-intercept (0,—1,0). Intersecting
S with the plane z = 0 gives the line —2y + z = 2, with z-intercept (0,0,2). Let
v, =(0,0,2)—(0,—1,0) = (0,1,2) and vy = (1,0,0) — (0, —1,0) = (1,1,0). Then S may
be parametrized as

X(s,t) =(0,—-1,0) + svy +tve = (t,s+t—1,25), 0<s+1t<1,

where the bounds on s + ¢ follow from the requirements that the z, y and z-coordinates
of X(s,t) satisfy z > 0, y <0 and z > 0.

We can check that we get the same normal vector this way: Ty = (0,1,2) = vy,
T, = (1,1,0) = vo and N(s,t) = Ty x T, = (—2,2,—1), so that taking the upward
normal gives the same vector N as before.

Let D :={(s,t) : 0 < s+t < 1}. Then the flux of F through S is

1
// X(s,t)) -ndsdt = //(t s+t—1,2s)- 3(2,—2,1)d$dt

// —(2t — 25 — 2t + 2+ 2s) dsdt

0

/ / —dsdt / “1-tdt=Z(1-2)=-=.
o Jo 0 3 3 2 3
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