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Exercise 1 (5.5.6, p. 341). Suppose T(u, v) = (u, uv). Explain how T transforms the
unit square D∗ = [0, 1]× [0, 1]. Is T one-to-one on D∗?

Solution. Note that T is not linear, so we can’t use the techniques described in the
beginning of Chapter 5.5 to analyze T. Instead, let’s try to get an idea of what T looks
like by analyzing where the vertical and horizontal line segments in D∗ are mapped by
T.

Horizontal line segments (i.e. ones parallel to the u-axis) can be described by equations
v = c for fixed 0 ≤ c ≤ 1. The image of such a line segment is the set {(x, y) = (u, cu) :
0 ≤ u ≤ 1}. This is a line segment of slope c and with endpoints (0, 0) and (1, c). As c
varies from 0 to 1, these line segments sweep out a triangle with vertices (0, 0), (1, 1) and
(1, 0).

We now turn to vertical line segments (i.e. ones parallel to the v-axis) can be described
by equations u = c for some fixed 0 ≤ c ≤ 1. The image of such a line is the set
{(x, y) = (c, cv) : 0 ≤ v ≤ 1}. This is a vertical line segment of length c with endpoints
(c, 0) and (c, c). We can think of it as ‘shrinking’ the initial line segment by parameter
c. Of course, as c varies from 0 to 1, these line segments sweep out the same triangle as
before.

Note in particular that the line segment u = 0 is collapsed to the origin (in other
words, every point of the form (0, v) with 0 ≤ v ≤ 1 is mapped to (0, 0)), so T is not
one-to-one (if we exclude the line u = 0 from the domain, T becomes one-to-one).

Exercise 2 (5.5.9, p. 342). Evaluate the integral∫ 2

0

∫ (x/2)+1

x/2

x5(2y − x)e(2y−x)
2

dydx

by making the substitution u = x, v = 2y − x.

Solution. We use the notation of Theorem 5.3 on p. 329. Our region of integration in
the xy-plane is D := {(x, y) : 0 ≤ x ≤ 2, x

2
≤ y ≤ x

2
+ 1}.

First, let’s solve for x and y as functions of u and v. We have x(u, v) = u and
y(u, v) = u+v

2
. Hence, our change of variables map is T(u, v) = (u, u+v

2
). The Jacobian is

∂(x, y)

∂(u, v)
= det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
= det

[
1 0
1
2

1
2

]
=

1

2
− 0 =

1

2
.

Next, we need to find a region D∗ in the uv-plane that is mapped to D by T. For this,
let’s describe the boundary of D. The region D is a parallelogram with vertices at the
points (0, 0), (1, 0), (2, 1) and (2, 2) of the xy-plane. The four sides of the boundary are
described by the equations x = 0, x = 2, y = x

2
and y = x

2
+1. We have x = 0 ⇐⇒ u = 0

and x = 2 ⇐⇒ u = 2. Moreover,

y =
x

2
⇐⇒ u+ v

2
=
u

2
⇐⇒ v = 0 and

y =
x

2
+ 1 ⇐⇒ u+ v

2
=
u

2
+ 1 ⇐⇒ v = 2.

Hence, we see that the region D∗ := {(u, v) : 0 ≤ u ≤ 2, 0 ≤ v ≤ 2} is mapped to D by
T. Finally, note that 2y−x = 2(u+v

2
)−u = v. Applying the change of variables theorem

(Theorem 5.3), our integral becomes∫ 2

0
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dvdu.
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Using the single-variable substitution w = v2, dw = 2v dv, we have∫ 2

0
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2
dvdu =
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4
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∫ 4
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26

6

1

4
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3
(e4 − 1).

Exercise 3 (5.5.14, pg. 342). Convert to an integral in polar coordinates and evaluate:∫ 2

0

∫ √4−x2
0

dydx.

Solution. The polar-to-cartesian change of coordinates map is T(r, θ) = (r cos θ, r sin θ).
As usual, we need to find a region D∗ in the rθ-plane that is mapped to D := {(x, y) :
0 ≤ x ≤ 2, 0 ≤ y ≤

√
4− x2}. Our region’s boundaries are described by x = 0, y = 0

and y =
√

4− x2. Moreover, have x ≥ 0 and y ≥ 0 for all (x, y) ∈ D. We have

x = 0 ⇐⇒ r cos θ = 0 ⇐⇒ cos θ = 0 ⇐⇒ θ =
π

2
,

y = 0 ⇐⇒ r sin θ = 0 ⇐⇒ sin θ = 0 ⇐⇒ θ = 0,

y =
√

4− x2 ⇐⇒ r2 sin2 θ = 4− r2 cos2 θ ⇐⇒ r2 = 4 ⇐⇒ r = 2.

We then see that D∗ = {(r, θ) : 0 ≤ r ≤ 2, 0 ≤ θ ≤ π
2
} is mapped to D by T.

Remark. We could also have recognized that D is a quarter-circle of radius 2 in the first
quadrant. If we noticed this, we could see the description D∗ = {(r, θ) : 0 ≤ r ≤ 2, 0 ≤
θ ≤ π

2
} right away and avoided the work of analyzing the boundary of D.

The Jacobian for polar-to-cartesian change of coordinates is just r (p. 331), so our
integral is equal to ∫ 2

0

∫ π/2

0

r dθdr =
π

2

∫ 2

0

r dr =
π

2

1

2
(4− 0) = π.

Note that a cirlce of radius 2 has area 4π, so indeed a quarter-circle of radius 2 should
have area π.


