Math/MTHE 280

Advanced Calculus, Fall 2016

Homework 1, due Thursday, September 22

1 A plane takes off from an airport with velocity vector (75,150,7.5) and maintains the same velocity. All units are kilometers per hour.

(i) How fast is the plane climbing vertically?

(ii) A 150 m tall skyscraper is located 5 km east and 10 km north of the airport. When will the airplane be directly over the skyscraper? (the x axis points east, the y axis points north)

(iii) when the airplane is directly above the skyscraper, how much vertical clearance is there.

2 Assume that a bicycle wheel of radius a rolls along a line without slipping. A reflector is attached to a spoke of the wheel at distance b from the center of the wheel. Find parametric equations describing the trajectory of the reflector. Note the curve traced by the reflector is called a curtate cycloid.

3. Let $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$ denote two vectors in \mathbb{R}^n .

(a) Show that the vectors $\|\vec{\mathbf{y}}\|\vec{\mathbf{x}} + \|\vec{\mathbf{x}}\|\vec{\mathbf{y}}$ and $\|\vec{\mathbf{y}}\|\vec{\mathbf{x}} - \|\vec{\mathbf{x}}\|\vec{\mathbf{y}}$ are orthogonal.

(b) Show that the vector $\|\vec{\mathbf{y}}\| \vec{\mathbf{x}} + \|\vec{\mathbf{x}}\| \vec{\mathbf{y}}$ bisects the angle between $\vec{\mathbf{x}}$ and $\vec{\mathbf{y}}$.

4. (a) Sketch the curves whose equations in polar coordinates are respectively $r = \cos(\theta)$ and $r = \cos(2\theta)$ for $0 \le \theta \le 2\pi$.

(b) Describe in words and sketch the surface whose equation in cylindrical coordinates is $r = \theta + 1$ for $0 \le \theta \le 2\pi$.

Note that we allow r < 0 for certain values of θ , which by convention means a reflection through the origin to give a point with polar coordinates $r > 0, \theta + \pi$.