Math/MTHE 280

Advanced Calculus, Fall 2016

Homework 4, due Friday Oct 7 (before 1pm!)

1(a) Let $\vec{F}, \vec{G} : \mathbb{R}^n \to \mathbb{R}^3$ be differentiable at $\tilde{\mathbf{a}} \in \mathbb{R}^n$. show that the following product formula holds

$$[D(\vec{F}\times\vec{G})(\vec{a})]\vec{x} = [D\vec{F}(\vec{a})]\vec{x}\times\vec{G}(\vec{a}) + \vec{F}(\vec{a})\times[D\vec{G}(\vec{a})]\vec{x}$$

Hint consider the cases when $\vec{x} = \vec{e}_1, \dots, \vec{e}_n$ (b) Suppose that n=3 and that $\vec{F}(\vec{a}) = 2\vec{i} + \vec{j} + 2\vec{k}$, and that $\vec{G}(\vec{a}) = \vec{i} + 2\vec{j} + \vec{k}$.

	0	1	0			-1	0	0
$D\vec{F}(\vec{a}) =$	1	0	1	,	$D\vec{G}(\vec{a}) =$	0	-1	1
	1	1	1			1	0	-1

Find $D(\vec{F} \times \vec{G})(\vec{a}))(\vec{i} + \vec{j} + \vec{k})$

2. Two surfaces which intersect at a point P are said to be *orthogonal at P* if their normals to their tangent planes are perpendicular at P. Show that the graphs in \mathbb{R}^3 of these two functions are orthogonal at every point of intersection.

$$z = \frac{1}{2} (x^2 + y^2 - 1), \qquad z = \frac{1}{2} (1 - x^2 - y^2)$$

3.(a) Consider the function

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Find the partial derivatives $f_x(0,0), f_y(0,0)$.

(b) Consider the parameterized curve in \mathbb{R}^2 given by $\gamma(t) = at\vec{i} + bt\vec{j}$ for arbitrary $a, b \in \mathbb{R}$. Show (directly, without chain rule) that $f \circ \gamma$ is differentiable at t = 0 and calculate $D(f \circ \gamma)(0)$.

(c) Calculate $D(F \circ \gamma)(0)$ using the chain rule. How would you reconcile this with the answer you found in

part b)?