Problem Set #11 Due: 30 November 2011

- 1. Evaluate $\int_Q \vec{E} \cdot d\vec{S}$ where $\vec{E}(x,y,z) := ze^{x^2}\vec{\imath} + 3y\vec{\jmath} + (2-yz^7)\vec{k}$ and Q is the union of the five "upper" faces of the unit cube $[0,1] \times [0,1] \times [0,1]$ orient outward. The face z=0 is not part of Q.
- **2.** Let S be the surface defined by $z=e^{1-x^2-y^2}$ with $z\geqslant 1$ oriented upward and let $\vec{\boldsymbol{H}}(x,y,z):=x\vec{\boldsymbol{\imath}}+y\vec{\boldsymbol{\jmath}}+(2-2z)\vec{\boldsymbol{k}}.$ Calculate $\int_S \vec{\boldsymbol{H}}\cdot d\vec{\boldsymbol{S}}.$
- **3.** (a) Consider a vector field $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$ such that $\vec{\nabla} \cdot \vec{F}(x,y,z) = x^2 + y^2 + 3$. Let M be the boundary of a bounded solid oriented outwads. Can $\int_M \vec{F} \cdot d\vec{S}$ be negative?
 - (b) Find the flux of the vector field $\vec{G}(x, y, z) = xy\vec{\imath} + yz\vec{\jmath} + zx\vec{k}$ out of a sphere of radius 1 centered at the origin.