Solutions #4

1.(a). Let F,G: R" — R? be differentiable at @ € R™ and let & € R". Show that
[D(F x G)(@)]# = [DF(a@)]Z x G(@) + F(@) x [DG(@)] &

Solution. Since both sides of the identity depend linearly on &, it is sufficient to prove it for
T =¢€,T=E¢€,... & =E¢&,. Fortherestof the proof we assume that & = €;.

We first note that multiplying a matrix by the standard basis vector €; simply gives the i-th
column of the matrix. Thus, linearity and the product rule yield

[DF(@))é, x G(@) + F(@) x [DG(@)]e;

OF, . OF, . OF . - L
:( Lt 2f+ 3k>x<Gli’+G25’+G3kz)

(F1z+F2g+F3 ) (

8 i ox;
_(9F 5 0F 5 OFi 5\ . (0F 5 0Fs5)\g
L 0G; 20 G, Z0Gs3) . G, = 0G )\ =
+<F2 13— 382>Z <3 :— 1ax13>]+<1812— 8x:>k
0 (= = - =\, O . 0 —~
= 8ZL’Z ( 2G3 — 3G2)’L + 8IZ <F3G1 F1G3)] + 8902 (FlGQ F2G1>k?
a g N\ =
- ()
_ [D(F x @) 5
1.(b). Suppose that n = 3, F(&) = 22+ 7+ 2k, G(@) = 7+ 27+ k,
. 010 . -1 0 0
DF(@)= |1 0 1 and DG(@)=|0 -1 1
1 1 1 1 0 -1
Find [D(F x G)(@)] @+ 7+ k).
Solution. Linearity and part (a) give
[D(F x G)(@)](@+7+k) = [DF(@)](7+ 7+ k) x G(@) + F(@) x [DG(@)](¥+ 7+ k)
= (T+27+3k) X (T+T+Ek) + @T+27+k) x (-7)
= (—47+27) + (2T + k)
— 47+ k 0
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2.(a). Two surfaces are said to be orthogonal to each other at a point P if the normals to
their tangent planes are perpendicular at P. Show that the surfaces

z=3("+y*—1) and z=3(1-2>-y%
are orthogonal at all points of intersection.

Solution. If f(z,y,z) = 3(2* +y* — 1) — z and g(z,y,2) = 3(1 — 2% — y?) — z, then the
normals to the tangent planes of the level surfaces f (x y,z) = 0 and g(z,y,2z) = 0 are
Vf(m y,z) = at + Yy — k: and Vg(x Y,2) = —2C—yJ— k respectively. On the other hand,

the surfaces z = (22 + y* — 1) and z = (1 — 2% — y?) intersect at the point (z,y, z) if and

onlyif%(mQ—l—yQ—l) = %(1—x2—y2) or1—az%—y>=0. Hence, Vf-Vg=—22—y*+1=0

at all points of intersection and the surfaces are orthogonal. U
= 0P 0?
2.(b). Show that the Laplacian operator V2 := V - V = 32 T 9 in R? is given in polar
x

coordinates by the formula

PP _® 10 18
oz Oy: o2 ror  r200?’

Solution. Let f denote a smooth function of x and y. Since x = rcos(d) and y = rsin(f),
the chain rule yields

of _0fox Ofdy _ of of g 0

aor Oz or oy dy or o (0)(% +sin(0)7. oy - or cos(0 )8x + sin(6 )ay
of _0fox  0f0y _ . af of o . 0 0
%~ 9290 + == 9y a0 rsin(6) o + 7 cos(0) ay adl- i 7 sin(0) o + 7 cos(0) o

Further applications of the chain rule also give

0? 9, 9] 0 0? 0?
GrJ; P (85‘[) P (cos(@)a—i + sm(Q)a—g) = COS(G)arﬁfx - Sin(e)ﬁrﬁfy

B *fox  O*f Oy , O*f 0x  O*f Oy
= cos(f) (8x2 or i OyOx E) +sin(6) (8x8y5 i 0y? E)
0*f 0*f O*f

— o2 : L
= cos (9)—(%2 + 2sin(f) cos(6) 320y + sin?(6) 507
0? 9 02 2 ) o2
= 52 — €08 (9)—(.3 5 + 2sin(f) cos(0) 920y 1+ sin (6)8_3/2
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02 0 (0 0 0 0
8—9‘2 =% (a—‘£> 20 <—r sin(@)—i + rcos(@)—f)

of i l - sin(@)g—f + 7 cos(0) 88;(;;

=—r (COS(Q)% + SIH(@)a_y) rsin(6) <@% * dydx 00
0°f ox  O*f Oy
+r cos(0) <8x8y% 6_92%)

= —rcos(f)

__af 2 2 82f_ 2 o' f 2 in2(0) 2
=-r5 + r%sin”(0) 52 2r°sin(6) COS(Q)axay + 7 sin”(0) 0,2
192 19 L, 9 o 2909
v g e S O~ 2 eosOp 5 ot )g5

_ , o 0* 19 10 0*  0?
Since cos?(#) + sin?(f) = 1, we obtain 52 + S + il + a7 O

Alternative Solution for 2(b). Rearranging the first two equations from the solution for 2(b),

.0 d sin(d) 0 a . 0 cos(f) 0 . ,
we obtain o cos(0) i and o sm(@)ar + -l Combining these with

linearity and the product rule yield

2 1 : 2 )
_ COS(@)(O)% n COSQ(Q)% N w% B cos(8):1n(0) afae N Smr(g) %
_ cos(6) sin(6) 0? cos(f) sin(6) 9 N sin2(6)8_2
r 000r r2 o0 2 962
_ COSQ(Q)(?_Q B cos(0) sin(f) 02 B cos() sin() 0? snﬁ(e)a_?
or? r orod r 000r r2 9p2

sin?(#) 9 2cos(f)sin(f) 0
et
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and

? 0[O\ (. d  cos(f) O , d  cos(f) O
a_yQ = 8_y <8_) = <Sln(9)a + , %) <Sll’l<9)5 + , %)

Y
= Sin(9)£ (Sin(@%) +Sin(0)£ (Coi@ % > n COS;(G) % <sm(9) % )

L cos(8) D (cos(e) a)

r 00\ r 90

e o 5. 0% cos(f)sin(d) O  cos(@)sin(f) 9*  cos*(F) O
A = e M=
+cos(9) sin(f) 9* cos(@)sin(d) 9 cos’(A) 0%
r 000r 2 00 r2  00?
, 9%  cos(f)sin(0) 0*  cos()sin(f) 9*  cos*(F) 92
_ 2 - -
B L 77 M . 2
+cos2(9)g _ 2cos()sin(0) 0
r o or r2 90
2 2 2 2
Since cos?(#) + sin?(§) = 1, we obtain o + o _ 7 + L9 + L0 O

ox? Oy  Or? r2002 ' ror

3. Consider the function

r? + y?
0 if (z,y) = (0,0).
(a) Find the partial derivatives f,(0,0) and f,(0,0).
(b) If H: R — R? is defined by H (t) = atZ+ bt for constants a and b, then show that
f o H is differentiable and find D(f o H)(0).

(c) Calculate Df(0,0)DH (0). How can this answer be reconciled with the answer in
part (b) and the chain rule?

I’yz .
o) - { it (5.) # (0.0

Solution.

(a) The definition of a partial derivative implies that

R
0.0 = iy PORTIOR < 170 <o,

(b) If g: R — R is given by g(t) = (f o H)(t) then

ab? _
- { (#5m)t 170
0 if t =0.
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For t #£ 0, g is a linear function and hence differentiable. For ¢ = 0, the definition of
the derivative (for a function of a single variable) gives

ab?

oy 90 =90 (FR)i—0  ab?
A

Thus, ¢ is differentiable on R and ¢/(0) = D(f o H)(0) = %.

(c) Part (a) implies that D f(0,0) = [0 0]. Since DH(t) = {Z}, we have

Df(0,0)Dg(0) = [0 0] m =0.

Since H is a smooth function on R and D(f o H)(0) # Df(0,0)DH(0), the Chain
rule implies that f is not differentiable at the origin. O

Remark. We could also show directly that f is not differentiable at the origin. Since
f2(0,0) =0 = £,(0,0), the candidate for a “best” linear approximation to f near the origin is
U(z,y) = f(0,0)+ f,(0,0)(x—0)+ f,(0,0)(y —0) = 0. The function f is differentiable provide

the linear approximation ¢ satisfies the small relative error criterion: ( l)mé : % =0.
z,y)—(0,0 ’

If this limits exists, then we get the same value no matter how (z,y) approaches (0,0).
However, when z = y, we have

x(x)?

lim = lim ———~—— = lim = 0.
woon @l A [wal bV re 237

This shows that f is not differentiable at the origin.
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