Solutions #5

1. Consider the surface defined by the equation

$$x^{3}z + x^{2}y^{2} + \sin(yz) = -3$$

(a) Find an equation for the plane tangent to this surface at the point (-1, 0, 3).

(b) Parametrize the line normal to this surface at the point (-1, 0, 3).

Solution.

(a) If $f(x, y, z) = x^3 z + x^2 y^2 + \sin(yz)$, then we have

$$\vec{\nabla}f(x,y,z) = (3x^2z + 2xy^2)\vec{\imath} + (2x^2y + z\cos(yz))\vec{\jmath} + (x^3 + y\cos(yz))\vec{k}.$$

Hence, the equation for the plane tangent to the surface at the point (-1, 0, 3) is

$$0 = \vec{\nabla} f(-1, 0, 3) \cdot \left((x\vec{\imath} + y\vec{\jmath} + z\vec{k}) - (-1\vec{\imath} + 3\vec{k}) \right)$$

= $(9\vec{\imath} + 3\vec{\jmath} - \vec{k}) \cdot \left((x+1)\vec{\imath} + y\vec{\jmath} + (z-3)\vec{k} \right)$
= $9x + 9 + 3y - z + 3$

or simply 9x + 3y - z = -12.

(b) From part (a), we deduce that the vector $\vec{n} := 9\vec{i} + 3\vec{j} - \vec{k}$ is normal to the surface at $\vec{p} := (-1, 0, 3)$. Thus, the function $\vec{\ell}(t) := \vec{n}t + \vec{p} = (9t - 1)\vec{i} + 3t\vec{j} + (3 - t)\vec{k}$ parametrizes the line normal to this surface that the given point.

2. Consider the path $\vec{\beta}: (0, \pi) \to \mathbb{R}^2$ given by $\vec{\beta}(t) := \sin(t)\vec{\imath} + (\cos(t) + \ln(\tan(t/2)))\vec{\jmath}$. The underlying curve is called the *tractrix*.

- (a) Show that derivative $\vec{\beta}'(t)$ is nonzero at everywhere except $t = \pi/2$.
- (b) Show that the length of the segment of the tangent of the tractrix between the point of tangency and the *y*-axis is constantly equal to 1.

Solution.

(a) Since $0 < t < \pi$ and

$$\vec{\beta}'(t) = \cos(t)\vec{\imath} + \left(-\sin(t) + \frac{1}{\tan(t/2)}\frac{1}{\cos^2(t/2)}\frac{1}{2}\right)\vec{\jmath}$$
$$= \cos(t)\vec{\imath} + \left(-\sin(t) + \frac{1}{2\sin(t/2)\cos(t/2)}\right)\vec{\jmath} = \cos(t)\vec{\imath} + \left(-\sin(t) + \frac{1}{\sin(t)}\right)\vec{\jmath}$$
$$= \cos(t)\vec{\imath} + \left(\frac{1 - \sin^2(t)}{\sin(t)}\right)\vec{\jmath} = \cos(t)\left[\vec{\imath} + \left(\frac{\cos(t)}{\sin(t)}\right)\vec{\jmath}\right],$$

we see that $\vec{\beta}'(t) = \vec{0}$ if and only if $\cos(t) = 0$ or equivalently $t = \pi/2$.

(b) For $t \neq \pi/2$, the tangent line of the tractrix through the point $\vec{\beta}(t)$ is parametrized by the path $\vec{\ell} : \mathbb{R} \to \mathbb{R}^2$ where

$$\vec{\boldsymbol{\ell}}(u) := \vec{\boldsymbol{\beta}}'(t)u + \vec{\boldsymbol{\beta}}(t) = \left(\cos(t)u + \sin(t)\right)\vec{\boldsymbol{\imath}} + \left(\frac{\cos^2(t)}{\sin(t)}u + \cos(t) + \ln(\tan(t/2))\right)\vec{\boldsymbol{\jmath}}$$

MATH 280: page 1 of 3

By construction, this line meets the tractrix at the point $\vec{\beta}(t)$ or u = 0. This line meets the y-axis when $\cos(t)u + \sin(t) = 0$ or $u = -\tan(t)$. When $0 < t < \pi/2$, we have $-\tan(t) < 0$; when $\pi/2 < t < \pi$, we have $-\tan(t) > 0$. Hence, length of the segment of the tangent line between the point of tangency and the y-axis is

$$\begin{aligned} \operatorname{length} &= \left| \int_{-\tan(t)}^{0} \|\vec{\ell}'(u)\| \, du \right| = \left| \int_{-\tan(t)}^{0} \|\vec{\beta}'(t)\| \, du \right| = \|\vec{\beta}'(t)\| \left| \int_{-\tan(t)}^{0} \, du \right| \\ &= \|\vec{\beta}'(t)\| |\tan(t)| = \left(|\cos(t)| \sqrt{1 + \frac{\cos^2(t)}{\sin^2(t)}} \right) |\tan(t)| \\ &= \left(|\cos(t)| \sqrt{\frac{\sin^2(t) + \cos^2(t)}{\sin^2(t)}} \right) |\tan(t)| = \left| \frac{\cos(t)}{\sin(t)} \tan(t) \right| = 1. \end{aligned}$$

Therefore, the length of the segment of the tangent of the tractrix between the point of tangency and the y-axis is constantly equal to 1. \Box

Alternative Solution to 2(b). Since the distance between two points is given by a line, one can also compute the length of the segment of the tangent line between the point of tangency and the y-axis as follows:

3(a). Show that the differentiable path $\vec{\gamma} \colon \mathbb{R} \setminus \{\vec{0}\} \to \mathbb{R}^3$ given by

$$\vec{\gamma}(t) = e^{2t}\vec{\imath} + \ln|t|\vec{\jmath} + \frac{1}{t}\vec{k}$$

is a flow line of the vector field $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\vec{F}(x, y, z) = 2x\vec{\imath} + z\vec{\jmath} - z^2\vec{k}$.

Solution. The path $\vec{\gamma}$ is a flow line of \vec{F} if and only if it satisfies the following system of differential equations:

$$\vec{\gamma}'(t) = \vec{F}(\vec{\gamma}(t)) \qquad \Longleftrightarrow \qquad \begin{cases} \vec{\gamma}_1'(t) = 2\vec{\gamma}_1(t) \\ \vec{\gamma}_2'(t) = \vec{\gamma}_3(t) \\ \vec{\gamma}_3'(t) = -(\vec{\gamma}_3(t))^2 \end{cases}$$

Since we have

$$\vec{\gamma}_{1}'(t) = \frac{d}{dt} (e^{2t}) = 2e^{2t} = 2\vec{\gamma}_{1}(t)$$
$$\vec{\gamma}_{2}'(t) = \frac{d}{dt} (\ln|t|) = \frac{1}{t} = \vec{\gamma}_{3}(t)$$
$$\vec{\gamma}_{3}'(t) = \frac{d}{dt} \left(\frac{1}{t}\right) = -\frac{1}{t^{2}} = -(\vec{\gamma}_{3}(t))^{2}$$

we conclude that $\vec{\gamma}$ is a flow line of \vec{F} .

3(b). Find the flow lines of the vector field $\vec{G} : \mathbb{R}^2 \to \mathbb{R}^2$ given by $\vec{G}(x, y) = x\vec{\imath} + 2y\vec{\jmath}$. Solution. The following figure represents the vector field and four distinct flow lines.

Let $\vec{\boldsymbol{\alpha}} : \mathbb{R} \to \mathbb{R}^2$ be a differentiable path. The path $\vec{\boldsymbol{\alpha}}(t) = \vec{\boldsymbol{\alpha}}_1(t)\vec{\boldsymbol{\imath}} + \vec{\boldsymbol{\alpha}}_2(t)\vec{\boldsymbol{\jmath}}$ is a flow line of $\vec{\boldsymbol{G}}$ if and only if it satisfies the following system of differential equations:

$$\vec{\boldsymbol{\alpha}}'(t) = \vec{\boldsymbol{G}} \big(\vec{\boldsymbol{\alpha}}(t) \big) \qquad \Longleftrightarrow \qquad \begin{cases} \vec{\boldsymbol{\alpha}}_1'(t) = \vec{\boldsymbol{\alpha}}_1(t) \\ \vec{\boldsymbol{\alpha}}_2'(t) = 2\vec{\boldsymbol{\alpha}}_2(t) \end{cases}$$

Solving this pair of ordinary differential equations, we see that $\vec{\alpha}_1(t) = c_1 e^t$ and $\vec{\alpha}_2(t) = c_2 e^{2t}$ where $\vec{c} := (c_1, c_2) \in \mathbb{R}^2$ is constant. The flow line $\vec{\alpha}(t) = c_1 e^t \vec{i} + c_2 e^{2t} \vec{j}$ passes through the point (c_1, c_2) at t = 0. Observe that all flow line converge at the origin as t tends to $-\infty$. \Box