THE CHOWLA PROBLEM AND ITS GENERALIZATIONS

Siddhi Pathak

Department of Mathematics and Statistics,
Queen’s University

23rd July 2016
Primes

Infinitude of primes - Euclid in 300 B.C.

Infinitude of primes - Euler's product formula in 1737: For any real $x > 1$,

$$\prod_{p \text{ prime}} \left(1 - \frac{1}{p^x}\right) = \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

Infinitude of primes in A.P. - Conjectured by Legendre and proved by Dirichlet in 1840, the theorem states that

Theorem

For any positive integers a and q with $(a, q) = 1$, there exist infinitely many primes p such that $p \equiv a \mod q$.

2 / 17
Infinitude of primes - Euclid in 300 B.C.
• Infinitude of primes - Euclid in 300 B.C.
• Infinitude of primes - Euler’s product formula in 1737: For any real $x > 1$,

$$\prod_{\text{prime } p} \left(1 - \frac{1}{p^x} \right)^{-1} = \sum_{n=1}^{\infty} \frac{1}{n^x}.$$
Primes

- Infinitude of primes - Euclid in 300 B.C.
- Infinitude of primes - Euler’s product formula in 1737: For any real \(x > 1 \),
 \[
 \prod_{p \text{ prime}} \left(1 - \frac{1}{p^x}\right)^{-1} = \sum_{n=1}^{\infty} \frac{1}{n^x}.
 \]
- Infinitude of primes in A.P. - Conjectured by Legendre and proved by Dirichlet in 1840, the theorem states that
Primes

- Infinitude of primes - Euclid in 300 B.C.
- Infinitude of primes - Euler’s product formula in 1737: For any real $x > 1$,
 \[\prod_{p \text{ - prime}} \left(1 - \frac{1}{p^x}\right)^{-1} = \sum_{n=1}^{\infty} \frac{1}{n^x}. \]
- Infinitude of primes in A.P. - Conjectured by Legendre and proved by Dirichlet in 1840, the theorem states that

Theorem

*For any positive integers a and q with $(a, q) = 1$, there exist infinitely many primes p such that $p \equiv a \mod q$.***
Dirichlet characters

For a positive integer q, a Dirichlet character of modulus q is a group homomorphism,

$$
\chi : (\mathbb{Z}/q\mathbb{Z})^* \rightarrow \mathbb{C}^*.
$$
Dirichlet characters

For a positive integer q, a Dirichlet character of modulus q is a group homomorphism,

$$\chi : \left(\mathbb{Z}/q\mathbb{Z} \right)^* \rightarrow \mathbb{C}^*.$$

This can be canonically extended to integers by defining

$$\chi(n) = \begin{cases}
\chi(n \mod q) & \text{if } (n, q) = 1, \\
0 & \text{otherwise.}
\end{cases}$$
Dirichlet characters

For a positive integer q, a Dirichlet character of modulus q is a group homomorphism,

$$\chi : (\mathbb{Z}/q\mathbb{Z})^* \to \mathbb{C}^*.$$

This can be canonically extended to integers by defining

$$\chi(n) = \begin{cases}
\chi(n \mod q) & \text{if } (n, q) = 1, \\
0 & \text{otherwise}.
\end{cases}$$

For example, the trivial homomorphism from $(\mathbb{Z}/q\mathbb{Z})^*$ to \mathbb{C}^* gives rise to the trivial character, namely,

$$\chi_0(n) = \begin{cases}
1 & \text{if } (n, q) = 1, \\
0 & \text{otherwise}.
\end{cases}$$
Dirichlet characters

For a positive integer \(q \), a Dirichlet character of modulus \(q \) is a group homomorphism,

\[
\chi : (\mathbb{Z}/q\mathbb{Z})^* \rightarrow \mathbb{C}^*.
\]

This can be canonically extended to integers by defining

\[
\chi(n) = \begin{cases}
\chi(n \mod q) & \text{if } (n, q) = 1, \\
0 & \text{otherwise}.
\end{cases}
\]

For example, the trivial homomorphism from \((\mathbb{Z}/q\mathbb{Z})^*\) to \(\mathbb{C}^*\) gives rise to the trivial character, namely,

\[
\chi_0(n) = \begin{cases}
1 & \text{if } (n, q) = 1, \\
0 & \text{otherwise}.
\end{cases}
\]

Remark

The Dirichlet characters, \(\chi : \mathbb{N} \rightarrow \mathbb{C} \) are periodic functions with period \(q \).
Let χ be a Dirichlet character of modulus q. Motivated by Euler, Dirichlet defined the series

$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s},$$

which is absolutely convergent for $\Re(s) > 1$.
Let χ be a Dirichlet character of modulus q. Motivated by Euler, Dirichlet defined the series

$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s},$$

which is absolutely convergent for $\Re(s) > 1$. Further, the multiplicativity of χ gives

$$L(s, \chi) = \prod_{p\text{ prime}} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1},$$

analogous to Euler’s product formula.
Let χ be a Dirichlet character of modulus q. Motivated by Euler, Dirichlet defined the series

$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s},$$

which is absolutely convergent for $\Re(s) > 1$. Further, the multiplicativity of χ gives

$$L(s, \chi) = \prod_{p \text{ prime}} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1},$$

analogous to Euler's product formula. For example,

$$L(s, \chi_0) = \prod_{p \text{ prime}} \left(1 - \frac{\chi_0(p)}{p^s}\right)^{-1} = \prod_{p \text{ prime, } (p,q)=1} \left(1 - \frac{1}{p^s}\right)^{-1}$$

$$= \zeta(s) \prod_{p \text{ prime, } p|q} \left(1 - \frac{1}{p^s}\right),$$

where $\zeta(s)$ denotes the Riemann zeta function.
Except for the trivial character, the L-functions corresponding to other Dirichlet characters with modulus q can be analytically continued to entire functions.
Except for the trivial character, the L-functions corresponding to other Dirichlet characters with modulus q can be analytically continued to entire functions. $L(s, \chi_0)$ has a simple pole at $s = 1$, which is crucial towards the proof.
Except for the trivial character, the L-functions corresponding to other Dirichlet characters with modulus q can be analytically continued to entire functions. $L(s, \chi_0)$ has a simple pole at $s = 1$, which is crucial towards the proof.

Since there are $\phi(q)$ many Dirichlet characters with modulus q, Dirichlet proved that for any integer a with $(a, q) = 1$,

$$\left[\prod_{\text{prime } p, \ p \equiv a \mod q} \left(1 - \frac{1}{p^s} \right)^{-1} \right]^{-\phi(q)} = \prod_{\chi \mod q} L(s, \chi)^{\overline{\chi(a)}},$$

for all $s \in \mathbb{C}$.
Thus, we have

\[
\left[\prod_{\substack{p \text{ prime,} \\ p \equiv a \mod q}} \left(1 - \frac{1}{p^s}\right)^{-1} \right]^{-\phi(q)} = \zeta(s) \left[\prod_{p \mid q} \left(1 - \frac{1}{p^s}\right) \right] \prod_{\chi \neq \chi_0} L(s, \chi)^{\chi(a)},
\]

Taking the limit at \(s \to 1^+ \) in the previous equation would lead to the result,
Thus, we have

\[
\left[\prod_{\begin{subarray}{c} p \text{ prime,} \\ p \equiv a \mod q \end{subarray}} \left(1 - \frac{1}{p^s}\right)^{-1}\right]^{-\phi(q)} = \zeta(s) \left[\prod_{p \mid q} \left(1 - \frac{1}{p^s}\right) \right] \prod_{\chi \neq \chi_0} L(s, \chi) \overline{\chi(a)},
\]

Taking the limit at \(s \to 1^+ \) in the previous equation would lead to the result, unless the pole of \(\zeta(s) \) at \(s = 1 \) gets cancelled by a zero of \(L(s, \chi) \) at \(s = 1 \)!
Thus, we have

\[
\left[\prod_{p \text{ prime}, \ p \equiv a \mod q} \left(1 - \frac{1}{p^s}\right)^{-1} \right]^{-\phi(q)} = \zeta(s) \left[\prod_{p | q} \left(1 - \frac{1}{p^s}\right) \right] \prod_{\chi \neq \chi_0} L(s, \chi)^{\chi(a)},
\]

Taking the limit at \(s \to 1^+ \) in the previous equation would lead to the result, unless the pole of \(\zeta(s) \) at \(s = 1 \) gets cancelled by a zero of \(L(s, \chi) \) at \(s = 1 \)!

Thus, we have that if

\[L(1, \chi) \neq 0, \text{ for all non-trivial characters with moduli } q, \]

then there are infinitely many primes in the arithmetic progressions \(a \mod q \) with \(a \) and \(q \) relatively prime.
Thus, we have

\[
\left[\prod_{\substack{p \text{ prime,} \\ p \equiv a \mod q}} \left(1 - \frac{1}{p^s} \right)^{-1} \right]^{-\phi(q)} = \zeta(s) \left[\prod_{p | q} \left(1 - \frac{1}{p^s} \right) \right] \prod_{\chi \neq \chi_0} L(s, \chi) \chi(a),
\]

Taking the limit at \(s \to 1^+ \) in the previous equation would lead to the result, unless the pole of \(\zeta(s) \) at \(s = 1 \) gets cancelled by a zero of \(L(s, \chi) \) at \(s = 1 \)! Thus, we have that if

\[L(1, \chi) \neq 0, \text{ for all non-trivial characters with moduli } q, \]

then there are infinitely many primes in the arithmetic progressions \(a \mod q \) with \(a \) and \(q \) relatively prime.

This is the most difficult step in the proof for which Dirichlet discovered the class number formula!
In the early 1960’s, intrigued by the mystery surrounding Dirichlet’s non-vanishing result, Sarvadaman Chowla considered the following question:
In the early 1960’s, intrigued by the mystery surrounding Dirichlet’s non-vanishing result, Sarvadaman Chowla considered the following question: Let f be a \mathbb{Q}-valued arithmetic function, periodic with prime period p and not identically zero. Further assume that $f(p) = 0$ and that

$$\sum_{a=1}^{p} f(a) = 0.$$
In the early 1960’s, intrigued by the mystery surrounding Dirichlet’s non-vanishing result, Sarvadaman Chowla considered the following question: Let f be a \mathbb{Q}-valued arithmetic function, periodic with prime period p and not identically zero. Further assume that $f(p) = 0$ and that

$$\sum_{a=1}^{p} f(a) = 0.$$

Then is it true that the series

$$\sum_{n=1}^{\infty} \frac{f(n)}{n} \neq 0?$$
The generalized Chowla problem

More generally, one can ask the following: Fix a positive integer q. Let f be an algebraic-valued (i.e., \mathbb{Q}-valued) arithmetic function, periodic with period q and not identically zero. Then is it true that

$$\sum_{n=1}^{\infty} \frac{f(n)}{n} \neq 0,$$

provided the series converges?
The generalized Chowla problem

More generally, one can ask the following: Fix a positive integer q. Let f be an algebraic-valued (i.e., \mathbb{Q}-valued) arithmetic function, periodic with period q and not identically zero. Then is it true that

$$\sum_{n=1}^{\infty} \frac{f(n)}{n} \neq 0,$$

provided the series converges?

Remark

This question aims to generalize Dirichlet’s theorem that

$$L(1, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n} \neq 0,$$

for a non-trivial Dirichlet character χ.
Let f be an arithmetic function, periodic with period q. Following Dirichlet, it is useful to define an L-series attached to f, namely,

$$L(s, f) := \sum_{n=1}^{\infty} \frac{f(n)}{n^s},$$

which converges absolutely for $\Re(s) > 1$.

Using the periodicity of f, we can rewrite $L(s, f)$ as follows:

$$\sum_{n=1}^{\infty} f(n) \frac{n}{n^s} = \frac{1}{q} \sum_{a=1}^{q} f(a) \sum_{k=0}^{\infty} \frac{1}{(a+qk)^s} = \frac{1}{q} \sum_{a=1}^{q} f(a) \sum_{k=0}^{\infty} \frac{1}{(k + a/q)^s}. $$

One observes that the inner summation is $\zeta(s, a/q)$, where $\zeta(s, x) := \sum_{n=0}^{\infty} \frac{1}{(n+x)^s}$, for $\Re(s) > 1$ and $0 < x \leq 1$ is the Hurwitz zeta function.
Let f be an arithmetic function, periodic with period q. Following Dirichlet, it is useful to define an L-series attached to f, namely,

$$L(s, f) := \sum_{n=1}^{\infty} \frac{f(n)}{n^s},$$

which converges absolutely for $\Re(s) > 1$. Using the periodicity of f, we can rewrite $L(s, f)$ as follows:

$$L(s, f) = \frac{1}{q} \sum_{a=1}^{q} f(a) \sum_{k=0}^{\infty} \frac{1}{(a+qk)^s}.$$

One observes that the inner summation is $\zeta(s, a/q)$, where $\zeta(s, x) := \sum_{n=0}^{\infty} \frac{1}{(n+x)^s}$, for $\Re(s) > 1$ and $0 < x \leq 1$ is the Hurwitz zeta function.
Let f be an arithmetic function, periodic with period q. Following Dirichlet, it is useful to define an L-series attached to f, namely,

$$L(s, f) := \sum_{n=1}^{\infty} \frac{f(n)}{n^s},$$

which converges absolutely for $\Re(s) > 1$. Using the periodicity of f, we can rewrite $L(s, f)$ as follows:

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \sum_{a=1}^{q} f(a) \sum_{k=0}^{\infty} \frac{1}{(a + kq)^s} = \frac{1}{q^s} \sum_{a=1}^{q} f(a) \sum_{k=0}^{\infty} \frac{1}{(k + a/q)^s}.$$

One observes that the inner summation is $\zeta(s, a/q)$, where

$$\zeta(s, x) := \sum_{n=0}^{\infty} \frac{1}{(n + x)^s},$$

for $\Re(s) > 1$ and $0 < x \leq 1$ is the Hurwitz zeta function.
Thus, we have

$$L(s, f) = \frac{1}{q^s} \sum_{a=1}^{\infty} f(a) \zeta \left(s, \frac{a}{q}\right),$$

for $\Re(s) > 1$.

In 1882, Hurwitz proved that $\zeta(s, x)$ obtains analytic continuation to the entire complex plane except for a simple pole at $s = 1$ with residue 1.

Thus, Hurwitz's theorem implies that $L(s, f)$ extends to an analytic function on the entire complex plane except for a simple pole at $s = 1$ with residue $1/q \left(\sum_{a=1}^{\infty} f(a)\right)$. Hence, we have

$$\infty \sum_{n=1}^{\infty} f(n) n < \infty \iff q \sum_{a=1}^{\infty} f(a) = 0.$$

Thus, we have

$$L(s, f) = \frac{1}{q^s} \sum_{a=1}^{q} f(a)\zeta\left(s, \frac{a}{q}\right),$$

for $\Re(s) > 1$. In 1882, Hurwitz proved that $\zeta(s, x)$ obtains analytic continuation to the entire complex plane except for a simple pole at $s = 1$ with residue 1.
Thus, we have

\[L(s, f) = \frac{1}{q^s} \sum_{a=1}^{q} f(a) \zeta \left(s, \frac{a}{q} \right), \]

for \(\Re(s) > 1 \). In 1882, Hurwitz proved that \(\zeta(s, x) \) obtains analytic continuation to the entire complex plane except for a simple pole at \(s = 1 \) with residue 1. Thus, Hurwitz’s theorem implies that \(L(s, f) \) extends to an analytic function on the entire complex plane except for a simple pole at \(s = 1 \) with residue \(1/q(\sum_{a=1}^{q} f(a)) \).
Thus, we have

$$L(s, f) = \frac{1}{q^s} \sum_{a=1}^{q} f(a)\zeta\left(s, \frac{a}{q}\right),$$

for $\Re(s) > 1$. In 1882, Hurwitz proved that $\zeta(s, x)$ obtains analytic continuation to the entire complex plane except for a simple pole at $s = 1$ with residue 1. Thus, Hurwitz’s theorem implies that $L(s, f)$ extends to an analytic function on the entire complex plane except for a simple pole at $s = 1$ with residue $1/q\left(\sum_{a=1}^{q} f(a)\right)$. Hence, we have

$$\sum_{n=1}^{\infty} \frac{f(n)}{n} < \infty \iff \sum_{a=1}^{q} f(a) = 0.$$
Chowla (1964) [3] - (Following an argument outlined by Siegel)

i. \mathbb{Q}-valued,
ii. periodic with prime period p,
iii. $f(p) = 0$,
iv. odd, i.e., $f(p - n) = -f(n)$,
The Chowla Problem: History I

- **Chowla (1964) [3]** - (Following an argument outlined by Siegel)

 i. \(\mathbb{Q}\)-valued,

 ii. periodic with prime period \(p\),

 iii. \(f(p) = 0\),

 iv. odd, i.e., \(f(p - n) = -f(n)\),

- **Baker, Birch, Wirsing (1973) [1]** -

 i. \(\overline{\mathbb{Q}}\)-valued,

 ii. periodic with period \(q\),

 iii. \(f(r) = 0\) for all \(r\) such that \(1 < (r, q) < q\),

 iv. \(\mathbb{Q}(f(1), \cdots, f(q)) \cap \mathbb{Q}(\zeta_q) = \mathbb{Q}\).
Baker, Birch, Wirsing (1973) [1] -

Constructed a basis for the \mathbb{Q}- vector space of odd, \mathbb{Q}-valued arithmetical functions f, periodic with period q such that $L(1, f) = 0$.

T. Chatterjee, R. Murty (2014) [2] - For a \mathbb{Q}-valued arithmetical function f, periodic with period q, if

\begin{align*}
 f_o(x) &:= f(x) - f(-x), \\
 f_e(x) &:= f(x) + f(-x),
\end{align*}

(thus, $f = f_o + f_e$, where f_o is an odd function and f_e is an even function) then $L(1, f) = 0 \iff L(1, f_o) = 0$ and $L(1, f_e) = 0$.

Baker, Birch, Wirsing (1973) [1] -

Constructed a basis for the \overline{Q}- vector space of odd, \overline{Q}-valued arithmetical functions f, periodic with period q such that $L(1, f) = 0$.

T. Chatterjee, R. Murty (2014) [2] - For a \overline{Q}-valued arithmetical function f, periodic with period q, if

$$f_o(x) := \frac{f(x) - f(-x)}{2}, \quad f_e(x) := \frac{f(x) + f(-x)}{2},$$

(thus, $f = f_o + f_e$, where f_o is an odd function and f_e is an even function) then

$$L(1, f) = 0 \iff L(1, f_o) = 0 \text{ and } L(1, f_e) = 0.$$
Given a function f which is periodic with period q, define the Fourier transform of f as

$$\hat{f}(x) := \frac{1}{q} \sum_{a=1}^{q} f(a) \zeta_q^{-ax},$$

where $\zeta_q = e^{2\pi i / q}$.
Given a function f which is periodic with period q, define the Fourier transform of f as

$$\hat{f}(x) := \frac{1}{q} \sum_{a=1}^{q} f(a) \zeta^{-ax},$$

where $\zeta = e^{2\pi i / q}$.

This can be inverted using the identity

$$f(n) = \sum_{x=1}^{q} \hat{f}(x) \zeta^{xn}.$$
Fourier Transform

Given a function f which is periodic with period q, define the Fourier transform of f as

$$\hat{f}(x) := \frac{1}{q} \sum_{a=1}^{q} f(a) \zeta^{-ax},$$

where $\zeta_q = e^{2\pi i / q}$.

This can be inverted using the identity

$$f(n) = \sum_{x=1}^{q} \hat{f}(x) \zeta^{xn}.$$

Thus, the condition for convergence of

$$\sum_{n=1}^{\infty} \frac{f(n)}{n}$$

seen earlier, i.e., $\sum_{a=1}^{q} f(a) = 0$ can be interpreted as $\hat{f}(q) = 0$.
We define the following functions that act as building blocks for even \(\overline{\mathbb{Q}} \)-valued arithmetical functions \(f \), periodic with period \(q \) and \(L(1, f) = 0 \).
We define the following functions that act as building blocks for even \(\overline{\mathbb{Q}} \)-valued arithmetical functions \(f \), periodic with period \(q \) and \(L(1, f) = 0 \).

For a divisor \(d \) of \(q \) such that \(1 < d < q \) and \(1 \leq c \leq d - 1 \), define:

\[
F_{d,c} := F_{d,c}^{(1)} - F_{d,c}^{(2)},
\]

where,
Building blocks for even functions with $L(1, f) = 0$

We define the following functions that act as building blocks for even $\overline{\mathbb{Q}}$-valued arithmetical functions f, periodic with period q and $L(1, f) = 0$.

For a divisor d of q such that $1 < d < q$ and $1 \leq c \leq d - 1$, define:

\[F_{d,c} := F_{d,c}^{(1)} - F_{d,c}^{(2)}, \]

where,

\[F_{d,c}^{(1)}(m) = \begin{cases} 1/2 & \text{if } m \equiv c \mod q, \\ 0 & \text{otherwise}. \end{cases} \]

\[F_{d,c}^{(2)}(m) = \begin{cases} 1/2 & \text{if } m \equiv \left(\frac{q}{d}\right)c \mod q, \\ 0 & \text{otherwise}. \end{cases} \]
Characterization of even functions f such that $L(1, f) = 0$

(Joint work with T. Chatterjee and R. Murty.)

Theorem

Let f be an even \mathbb{Q}-valued arithmetical function, periodic with period q and

$$
\sum_{a=1}^{q} f(a) = 0.
$$

If $L(1, f) = 0$, then f is an algebraic linear combination of the functions

$$
\{ \widehat{F}_{d,c} \mid d \text{ is a divisor of } q, 1 < d < q, 1 \leq c \leq d - 1 \}.
$$

Here, $\widehat{F}_{d,c}$ denotes the Fourier transform of $F_{d,c}$.
Characterization of even functions f such that $L(1, f) = 0$

(Joint work with T. Chatterjee and R. Murty.)

Theorem

Let f be an even \mathbb{Q}-valued arithmetical function, periodic with period q and

$$\sum_{a=1}^{q} f(a) = 0.$$

If $L(1, f) = 0$, then f is an algebraic linear combination of the functions

$$\{ \widehat{F}_{d,c} \mid d \text{ is a divisor of } q, 1 < d < q, 1 \leq c \leq d - 1 \}.$$

Here, $\widehat{F}_{d,c}$ denotes the Fourier transform of $F_{d,c}$.

This theorem gives a necessary condition for $L(1, f)$ to vanish.
Conclusion

As a corollary of this theorem, we obtain that:

Corollary

Let f be an algebraic-valued arithmetic function, periodic with prime period p. If f is an even function (i.e, $f(p - n) = f(n)$), then

\[L(1, f) \neq 0. \]
As a corollary of this theorem, we obtain that:

Corollary

Let f be an algebraic-valued arithmetic function, periodic with prime period p. If f is an even function (i.e, $f(p - n) = f(n)$), then

$$L(1, f) \neq 0.$$

Recall that Chowla proved non-vanishing of $L(1, f)$ when f is \mathbb{Q}-valued and odd. Thus, the above corollary together with the Chatterjee-Murty theorem answers Chowla’s original question in the affirmative.
As a corollary of this theorem, we obtain that:

Corollary

Let f be an algebraic-valued arithmetic function, periodic with prime period p. If f is an even function (i.e., $f(p - n) = f(n)$), then

$$L(1, f) \neq 0.$$

Recall that Chowla proved non-vanishing of $L(1, f)$ when f is \mathbb{Q}-valued and odd. Thus, the above corollary together with the Chatterjee-Murty theorem answers Chowla’s original question in the affirmative. Indeed, if f is a \mathbb{Q}-valued arithmetic function, periodic with prime period p, then

$$L(1, f) \neq 0.$$
Thank you!

