Chapter 9
Connected and Path Connected Metric Spaces

Consider the following subsets of \mathbb{R}:

$$S = [-1, 0] \cup [1, 2] \text{ and } T = [0, 1].$$

Notice that S is made up of two “parts” and that T consists of just one. This notion can be more precisely described using the following definition.

9.1 - Definition: A subset A of a metric space X is not connected (disconnected) if there are disjoint open sets U and V such that $A \subseteq U \cup V$, $A \cap U \neq \emptyset$ and $A \cap V \neq \emptyset$. If no such disjoint open sets U and V exist then A is connected.

9.2 - Examples:

1. Let $S = [-1, 0] \cup [1, 2] \subseteq \mathbb{R}$. Let $U = (-1.1, 0.1)$ and $V = (0.9, 2.2)$. U and V are disjoint, open subsets of \mathbb{R}. $S \subseteq U \cup V$, $S \cap U \neq \emptyset$ and $S \cap V \neq \emptyset$. Thus, S is not connected.

2. Let $S = [-1, 0] \cup (0, 1] \subseteq \mathbb{R}$. Let $U = (-2, 0)$ and $V = (0, 2)$. U and V are disjoint, open subsets of \mathbb{R}. $S \subseteq U \cup V$, $S \cap U \neq \emptyset$ and $S \cap V \neq \emptyset$. Therefore, S is not connected.

9.3 - Proposition: The interval $[a, b]$ is connected.

Before proceeding with the proof, recall the following:

The Intermediate Value Theorem: Suppose that f is a continuous function $f : [s, t] \to \mathbb{R}$. If N is a real number between $f(s)$ and $f(t)$, then $\exists c \in [s, t]$ such that $f(c) = N$.

We are now ready to prove the proposition.

Proof: Assume that $[a, b]$ is not connected. Then there exist some disjoint open sets, U and V, such that $[a, b] \subseteq U \cup V$, $[a, b] \cap U \neq \emptyset$ and $[a, b] \cap V \neq \emptyset$. Define a function,

$$f(x) = \begin{cases}
1 & \text{if } x \in [a, b] \cap U \\
-1 & \text{if } x \in [a, b] \cap V
\end{cases}$$

Claim: f is continuous.

Let $\varepsilon > 0$ be given and let x_0 be in $[a, b] \cap U$. Because U is an open set, if x_0 is in U, then there is some $\delta > 0$ such that $B_\delta(x_0) \subseteq U$. For every x with $|x - x_0| < \delta$, we know that $x \in U$ and thus $f(x) = 1$. Therefore, for $|x - x_0| < \delta$, we have:
Similarly, since V is an open set, if $x_0 \in V$, then there is some $\delta > 0$ such that $B_\delta(x_0) \subset V$. So, whenever $|x - x_0| < \delta$, we have:

$$| f(x) - f(x_0)| = |1 - 1| = 0 < \varepsilon.$$

Thus, f is a continuous function from $[a, b]$ to \mathbb{R}.

Now, the range of f is $\{-1, 1\}$ which, because f is continuous, is a contradiction to the intermediate value theorem. Therefore, the assumption that $[a, b]$ is not connected is wrong. Hence, $[a, b]$ is connected.

9.4 - Theorem: Let (X, ρ) and (Y, σ) be metric spaces. Suppose that $f : (X, \rho) \rightarrow (Y, \sigma)$ is a continuous function. If X is connected, then the image, $f(X)$ is connected. (In other words, the continuous image of a connected set is connected.)

Proof: Assume that $f(X)$ is not connected. Then there exist some disjoint open sets, U and V, such that $f(X) \subset U \cup V$, $f(X) \cap U \neq \emptyset$ and $f(X) \cap V \neq \emptyset$. Let $S = f^{-1}(U)$ and $T = f^{-1}(V)$.

1. Since f is continuous, the inverse image of an open set is open. Therefore, S and T are open.

2. $S \cap T = f^{-1}(U) \cap f^{-1}(V) = \emptyset$.

To show this, assume that $x \in f^{-1}(U) \cap f^{-1}(V)$. Then, $x \in f^{-1}(U)$ and $x \in f^{-1}(V)$. This implies that $f(x) \in U$ and $f(x) \in V$ which means that $f(x) \in U \cap V$. Thus, $U \cap V \neq \emptyset$ which is a contradiction. So, $S \cap T = \emptyset$.

3. $X \subset S \cup T$.

Assume that there exists an $x \in X$ with $x \notin S \cup T$. So, $x \notin f^{-1}(U) \cup f^{-1}(V)$. Then, as $x \notin f^{-1}(U)$ and $x \notin f^{-1}(V)$ we get that $f(x) \notin U$ and $f(x) \notin V$. Therefore, $f(x) \notin U \cup V$. As this is a contradiction, $X \subset S \cup T$.

4. $X \cap S \neq \emptyset$ and $X \cap T \neq \emptyset$.

First we show that $X \cap S \neq \emptyset$. To do this, suppose $X \cap S = X \cap f^{-1}(U) = \emptyset$. Therefore, if $x \in X$ then $x \notin f^{-1}(U)$. Hence, if $x \in X$, then $f(x) \notin U$. Thus, $f(X) \cap U = \emptyset$. This is a contradiction. Therefore, $X \cap S \neq \emptyset$. By the same argument, $X \cap T \neq \emptyset$.

As a summary of the four points above, X is NOT connected. This contradicts the condition that X is connected. This then implies that the original assumption that $f(X)$ is not connected must be incorrect. Therefore, $f(X)$ is connected.

9.5 - Example: A *Path*

A path in a metric space is a continuous image of the interval $[0, 1]$. Hence, by propositions 9.3 and 9.4, a path is always connected. In particular, if $f : [0, 1] \rightarrow \mathbb{R}^n$ is continuous, then
the graph $G(f) = \{(x, f(x)) : 0 \leq x \leq 1\}$ is connected.

9.6 - Definition: A subset S of a metric space is path connected if for all $x, y \in S$ there is a path in S connecting x and y.

9.7 - Proposition: Every path connected set is connected.

Proof: Let S be path connected. Assume that S is not connected. Therefore, there exist open sets U and V such that $U \cap V = \emptyset$, $S \subset U \cup V$, $S \cap U \neq \emptyset$ and $S \cap V \neq \emptyset$. Pick $u \in S \cap U$, $v \in S \cap V$. Since S is path connected, there is a path P from u to v in S. $P \subset U \cup V$. Also, $u \in P \cap U \Rightarrow P \cap U \neq \emptyset$ and $v \in P \cap V \Rightarrow P \cap V \neq \emptyset$.

Thus, since U and V are open, disjoint sets such that $P \subset U \cup V$, $P \cap U \neq \emptyset$ and $P \cap V \neq \emptyset$, P is not connected. However, by example 9.5, we know that every path is connected. So, we have reached a contradiction. Thus, the assumption was incorrect and so S is connected.

9.8 - Exercise: Show that the only connected subsets of \mathbb{R} are intervals.

Solution: Consider an interval $I \subset \mathbb{R}$. Let $x, y \in I$ be given. Then the path $f : [0, 1] \rightarrow I$ with $f(t) = (y - x)t + x$ will connect x to y. Therefore, I is path connected and thus connected (by Prop. 9.7).

To complete the proof, we now show that any subset of \mathbb{R} that is not an interval is not connected. We proceed by contradiction. Let $J \subset \mathbb{R}$ be connected. Suppose that J is not an interval in \mathbb{R}. Since it is not an interval, there are points $x, y, a \in \mathbb{R}$ such that $x, y \in J$, $a \notin J$ and $x < a < y$. Let $U = (-\infty, a)$ and let $V = (a, \infty)$. U and V are open, disjoint subsets of \mathbb{R}. $J \subset U \cup V$. As well, since $x \in U$, $J \cap U \neq \emptyset$ and since $y \in V$, $J \cap V \neq \emptyset$. Thus J is not connected. This is a contradiction and so the assumption that J is not an interval is incorrect.

9.9 - Example: There exist sets which are connected but not path connected.

To see this, we consider the set $S = \{(0, y) : |y| \leq 1\} \cup \{(x, \sin \frac{1}{x}) : 0 < x \leq 1\}$. Part of this set is pictured below.
S is connected. To see this, note that both \(\{(0, y) : |y| \leq 1\} \) and \(\{(x, \sin \frac{1}{x}) : 0 < x \leq 1\} \) are path connected and thus connected. Now assume that \(S \) is not connected and thus that there exist two open, disjoint sets \(U \) and \(V \) which cover \(S \) and such that \(S \cap U \neq \emptyset \) and \(S \cap V \neq \emptyset \). Then we must have that \(\{(0, y) : |y| \leq 1\} \) is completely contained in one of the sets, say \(U \), and that \(\{(x, \sin \frac{1}{x}) : 0 < x \leq 1\} \) is completely contained in \(V \). (If this were not the case then we would contradict the connectedness of \(\{(0, y) : |y| \leq 1\} \) or the connectedness of \(\{(x, \sin \frac{1}{x}) : 0 < x \leq 1\} \). However, any open set that contains points in \(\{(0, y) : |y| \leq 1\} \) will also contain points in \(\{(x, \sin \frac{1}{x}) : 0 < x \leq 1\} \). This then contradicts that \(U \) and \(V \) are disjoint. Thus, there cannot be two disjoint, open sets that cover \(S \) with \(S \cap U \neq \emptyset \) and \(S \cap V \neq \emptyset \). As a result, \(S \) must be connected.

\(S \) is not path connected. To explain why, we proceed by contradiction. Suppose that \(S \) is path connected. Then there exists a continuous function \(f : [0, 1] \to S \) with \(f(0) = (0, 0) \) and \(f(1) = (1, \sin 1) \). Now let \(Y = \{(0, y) : |y| \leq 1\} \) and let \(a = \sup \{x : f(x) \in Y\} \). Since \(a = \sup \{x : f(x) \in Y\} \), we have that for any \(\varepsilon > 0 \), \(a + \varepsilon \notin Y \).

Since \(f \) is a continuous function, there is a \(\delta > 0 \) such that \(||f(x) - f(a)|| \leq \frac{1}{2} \) whenever \(|x - a| \leq \delta \). Let \(b = a + \delta \). Since \(a + \delta \notin Y \), \(f(b) = (u, \sin \frac{1}{u}) \) for some \(u \in [0, 1] \). Also, any \(c \) with \(a < c < b \) has \(f(c) = (t, \sin \frac{1}{t}) \) for some \(t \in [0, 1] \).

Because \(f \) is continuous, \(f([c, b]) \) is connected. However, removing any point from \(f([c, b]) \) will disconnect it. Therefore, the set \(A = \{(x, \sin \frac{1}{x}) : t \leq x \leq u\} \) is contained in \(f([c, b]) \). So, if \(c \) is chosen close enough to \(a \) so that the graph of \(\sin \frac{1}{x} \) completes a full oscillation in the interval \([t, u]\), then there are \(x_1, x_2 \in [t, u] \) with \(\sin \frac{1}{x_1} = 1 \) and \(\sin \frac{1}{x_2} = -1 \). Hence, there must be a point \(\mathbf{v} = (v, \sin \frac{1}{v}) \) where \(v \) is between \(x_1 \) and \(x_2 \) and where \(||f(a) - \mathbf{v}|| > 1 \). As \(\mathbf{v} \in f([c, b]) \), there must be some \(d \in [c, b] \) such that \(f(d) = \mathbf{v} \). This means that \(|d - a| \leq \delta \) but \(||f(a) - \mathbf{v}|| > \frac{1}{2} \) which contradicts the continuity of \(f \). Thus, the original assumption was wrong and \(S \) is not path connected.