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ROLAND SPEICHER

Abstract. Free probability theory originated in the context of
operator algebras, however, one of the main features of that theory
is its connection with random matrices. Indeed, free probability
can be considered as the theory providing concepts and notations,
without relying on random matrices, for dealing with the limit
N →∞ of N ×N -random matrices.

One of the basic approaches to free probability, on which I will
concentrate in this lecture, is of a combinatorial nature and centers
around so-called free cumulants. In the spirit of the above these
arise as the combinatorics (in leading order) of N × N -random
matrices in the limit N = ∞. These free cumulants are multi-
linear functionals which are defined in combinatorial terms by a
formula involving non-crossing partitions.

I will present the basic definitions and properties of non-crossing
partitions and free cumulants and outline its relations with freeness
and random matrices. As examples, I will consider the problems
of calculating the eigenvalue distribution of the sum of randomly
rotated matrices and of the compression (upper left corner) of a
randomly rotated matrix.

1. Random matrices and freeness

Free probability theory, due to Voiculescu, originated in the context
of operator algebras, however, one of the main features of that theory
is its connection with random matrices. Indeed, free probability can
be considered as the theory providing concepts and notations, without
relying on random matrices, for dealing with the limit N → ∞ of
N ×N -random matrices.

Let us consider a sequence (AN)N∈N of selfadjoint N × N -random
matrices AN . In which sense can we talk about the limit of these ma-
trices? Of course, such a limit does not exist as a ∞×∞-matrix and
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there is no convergence in the usual topologies connected to opera-
tors. What converges and survives in the limit are the moments of the
random matrices.

To talk about moments we need in addition to the random matrices
also a state. This is given in a canonical way by the averaged trace: Let
trN be the normalized trace on N ×N -matrices, i.e. for A = (aij)

N
i,j=1

we have

trN(A) :=
1

N

N∑
i=1

aii.

In the same way, we get the averaged trace trN ⊗E for N ×N -random
matrices, i.e. for A = (aij(ω))N

i,j=1 (where the entries aij are random
variables on some probability space Ω equipped with a probability mea-
sure P ) we have

trN ⊗ E(A) :=
1

N

N∑
i=1

∫
Ω

aii(ω)dP (ω).

Given these states trN ⊗E, we can now talk about the k-th moment
trN ⊗ E(Ak

N) of our random matrix AN , and it is well known that for
nice random matrix ensembles these moments converge for N → ∞.
So let us denote by αk the limit of the k-th moment,

lim
N→∞

trN ⊗ E(Ak
N) =: αk.

Thus we can say that the limit N = ∞ consists exactly of the collection
of all these moments αk. But instead of talking about a collection of
numbers αk we prefer to identify these numbers as moments of some
variable A. Abstractly it is no problem to find such an A, we just take
a free algebra A with generator A and define a state ϕ on A by setting

ϕ(Ak) := αk.

Of course, nothing deep has happened, this is just a shift in language,
but it provides us with a more conceptual way of looking at the limit
of our random matrices. Now we can say that our random matrices
AN converge to the variable A in distribution (which just means that
the moments of AN converge to the moments of A). We will denote
this by AN → A. Note that the nature of the limit N = ∞ is quite
different from the case of finite N . In the latter case the AN live in
classical probability spaces of N × N -random matrices, whereas the
N = ∞ limit object A is not of a classical nature any more, but lives
in a ‘non-classical probability space’ given by some algebra A and a
state ϕ.
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1.1. Remark. One should note that for a selfadjoint operator A = A∗,
the collection of moments (or, equivalently, the state ϕ corresponding
to these moments) corresponds also to a probability measure µA on the
real line, determined by

ϕ(Ak) =

∫
R

tkdµA(t).

(We can ignore the problem of non-uniqueness of this moment problem,
because usually our operators A are bounded, which ensures unique-
ness.) In particular, for a selfadjoint N×N -matrix A = A∗ this measure
is given by the eigenvalue distribution of A, i.e. it puts mass 1/N on
each of the eigenvalues of A (counted with multiplicity):

µA =
1

N

N∑
i=1

δλi
,

where λ1, . . . , λN are the eigenvalues of A. In the same way, for a
random matrix A, µA is given by the averaged eigenvalue distribution
of A. Thus, moments of random matrices with respect to the averaged
trace trN ⊗ E contain exactly that type of information in which one is
usually interested when dealing with random matrices.

1.2. Example. Let us consider the basic example of random matrix
theory, expressed in our new language. Let GN be the usual selfadjoint
Gaussian N ×N -random matrices (i.e., entries above the diagonal are
independently and normally distributed). Then the famous theorem of
Wigner can be stated in our language in the form that

GN → s, where s is a semi-circular variable,

where semi-circular just means that the measure µs is given by the
semi-circular distribution (or, equivalently, the even moments of the
even variable s are given by the Catalan numbers).

Up to now, nothing crucial has happened, we have just shifted a bit
the usual way of looking on things. A new and crucial concept, however,
appears if we go over from the case of one variable to the case of more
variables. Of course, again joint moments are the surviving quantities
in multi-matrix models (even if it is now not so clear any more how to
prove this convergence in concrete models) and we can adapt our way
of looking on things to this situation by making the following definition.
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1.3. Definition. Consider N ×N -random matrices A
(1)
N , . . . , A

(m)
N and

variables A1, . . . , Am (living in some abstract algebra A equipped with
a state ϕ). We say that

(A
(1)
N , . . . , A

(m)
N ) → (A1, . . . , Am) in distribution,

if

lim
N→∞

trN ⊗ E[A
(i1)
N · · ·A(ik)

N ] = ϕ(Ai1 · · ·Aik)

for all choices of k, 1 ≤ i1, . . . , ik ≤ m.

1.4. Remark. The A1, . . . , Am arising in the limit of random matrices
are a priori abstract elements in some algebra A, but it is good to know
that in many cases they can also be concretely realized by some kind
of creation and annihilation operators on a full Fock space. Indeed,
free probability theory was introduced by Voiculescu for investigating
the structure of special operator algebras generated by these type of
operators. In the beginning, free probability had nothing to do with
random matrices.

1.5. Example. Let us now consider the example of two independent

Gaussian random matrices G
(1)
N , G

(2)
N (i.e., each of them is a selfadjoint

Gaussian random matrix and all entries of G
(1)
N are independent from

all entries of G
(2)
N ). Then one knows that all joint moments converge,

and we can say that (G
(1)
N , G

(2)
N ) → (s1, s2), where Wigner tells us

that both s1 and s2 are semi-circular. The question is: What is the

relation between s1 and s2? Does the independence between G
(1)
N and

G
(2)
N survive in some form also in the limit? The answer is yes and is

provided by a basic theorem of Voiculescu which says that s1 and s2

are free in the following sense.

1.6. Definition. Let A be a unital algebra and ϕ : A → C a linear
functional on A, which is unital, i.e., ϕ(1) = 1. Then a1, . . . , am ∈ A
are called free (with respect to ϕ) if

ϕ[p1(ai(1)) · · · pk(ai(k))] = 0

whenever

• p1, . . . , pk are polynomials in one variable
• i(1) 6= i(2) 6= i(3) 6= · · · 6= i(k) (only neigbouring elements are

required to be distinct)
• ϕ[pj(ai(j)] = 0 for all j = 1, . . . , k
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1.7. Remark. Note that the definition of freeness can be considered
as a way of organizing the information about all joint moments of
free variables in a systematic and conceptual way. Indeed, the above
definition allows to calculate mixed moments of free variables in terms
of moments of the single variables. For example, if a, b are free, then
the definiton of freeness requires that

ϕ[(a− ϕ(a) · 1)(b− ϕ(b) · 1)] = 0,

which implies that

ϕ(ab) = ϕ(a) · ϕ(b) if a, b are free.

In the same way,

ϕ[(a− ϕ(a) · 1)(b− ϕ(b) · 1)(a− ϕ(a) · 1)(b− ϕ(b) · 1)] = 0

leads finally to

ϕ(abab) = ϕ(aa) ·ϕ(b) ·ϕ(b)+ϕ(a) ·ϕ(a) ·ϕ(bb)−ϕ(a) ·ϕ(b) ·ϕ(a) ·ϕ(b).

Analogously, all mixed moments can (at least in principle) be calculated
by reducing them to alternating products of centered variables as in the
definition of freeness.

Thus the statement ‘s1, s2 are free and each of them is semicircular’
determines all joint moments in s1 and s2.

Formulating our knowledge about the joint moments of s1 and s2 in
this peculiar way might look not very illuminating on first sight, but it
will turn out that recognizing this notion of freeness as the organizing
principle for the collection of moments adds a new perspective on the
limit of random matrices.

In particular, we are now in the context of non-commutative prob-
ability theory which consists mainly of the doctrine that one should
use notations and ideas from classical probability theory in order to
understand problems about non-commutative algebras.

Free probability theory can be described as that part of non-com-
mutative probability theory where the notion of ‘freeness’ plays an es-
sential role. Furthermore, according to the basic philosophy of Voiculescu
this notion of freeness should be considered (and investigated) in anal-
ogy with the classical notion of ‘independence’ - both freeness and in-
dependence prescribe special relations between joint moments of some
variables. (Of course, both cases correspond to very special, but also
very fundamental situations.)
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One of the most interesting features of freeness is that this concept
appears in at least two totally different mathematical situations. Orig-
inally it was introduced by Voiculescu in the context of operator alge-
bras, later it turned out that there is also some relation, as described
above, with random matrices. This gives a non-trivial connection be-
tween these two different fields. For example, modelling operator alge-
bras by random matrices has led to some of the most impressive results
about operator algebras in the last years.

Furthermore, apart from the concrete manifestations of freeness via
random matrices or operator algebras, there exist also an abstract prob-
abilistic theory of freeness, which shows the depth of this concept and
which I want to address in the following.

2. Combinatorial approach to free probability:
non-crossing partitions and free cumulants

‘Freeness’ of random variables is defined in terms of mixed moments;
namely the defining property is that very special moments (alternating
and centered ones) have to vanish. This requirement is not easy to
handle in concrete calculations. Thus we will present here another ap-
proach to freeness, more combinatorial in nature, which puts the main
emphasis on so called ‘free cumulants’. These are some polynomials in
the moments which behave much better with respect to freeness than
the moments. The nomenclature comes from classical probability the-
ory where corresponding objects are also well known and are usually
called ‘cumulants’ or ‘semi-invariants’. There exists a combinatorial
description of these classical cumulants, which depends on partitions
of sets. In the same way, free cumulants can also be described com-
binatorially, the only difference to the classical case is that one has to
replace all partitions by so called ‘non-crossing partitions’.

This combinatorial description of freeness is due to me [8, 9] (see
also [3]); in a series of joint papers with A. Nica [4, 5, 6] it was pursued
very far and yielded a lot of new results in free probability theory. For
more information on other aspects of freeness, in particular the original
analytical approach of Voiculescu, one should consult the papers [10,
11, 13], the collection of various articles [13], or the monographs [14, 1]

2.1. Definitions. A partition of the set S := {1, . . . , n} is a decompo-
sition

π = {V1, . . . , Vr}
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of S into disjoint and non-empty sets Vi, i.e.

Vi ∩ Vj = ∅ (i, j = 1, . . . , r; i 6= j) and S =
r⋃

i=1

Vi.

We call the Vi the blocks of π.
For 1 ≤ p, q ≤ n we write

p ∼π q if p and q belong to the same block of π.

A partition π is called non-crossing if the following does not occur:
There exist 1 ≤ p1 < q1 < p2 < q2 ≤ n with

p1 ∼π p2 6∼π q1 ∼π q2.

The set of all non-crossing partitions of {1, . . . , n} is denoted by NC(n).
Non-crossing partitions were introduced by Kreweras [2] in a purely

combinatorial context without any reference to probability theory.

2.2. Examples. We will also use a graphical notation for our parti-
tions; the term ‘non-crossing’ will become evident in such a notation.
Let

S = {1, 2, 3, 4, 5}.
Then the partition

π = {(1, 3, 5), (2), (4)} =̂

1 2 3 4 5

is non-crossing, whereas

π = {(1, 3, 5), (2, 4)} =̂

1 2 3 4 5

is crossing.

2.3. Remarks. 1) In an analogous way, non-crossing partitions NC(S)
can be defined for any linearly ordered set S; of course, we have

NC(S1) ∼= NC(S2) if #S1 = #S2.

2) In most cases the following recursive description of non-crossing
partitions is of great use: a partition π ist non-crossing if and only if
at least one block V ∈ π is an interval and π\V is non-crossing; i.e.
V ∈ π has the form

V = (k, k + 1, . . . , k + p) for some 1 ≤ k ≤ n and p ≥ 0, k + p ≤ n

and we have

π\V ∈ NC(1, . . . , k − 1, k + p + 1, . . . , n) ∼= NC(n− (p + 1)).
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Example: The partition

{(1, 10), (2, 5, 9), (3, 4), (6), (7, 8)} =̂

1 2 3 4 5 6 7 8 9 10

can, by successive removal of intervals, be reduced to

{(1, 10), (2, 5, 9)}=̂{(1, 5), (2, 3, 4)}

and finally to

{(1, 5)}=̂{(1, 2)}.
3) By writing a partition π in the form π = {V1, . . . , Vr} we will always
assume that the elements within each block Vi are ordered in increasing
order.

2.4. Definition. Let (A, ϕ) be a probability space, i.e. A is a unital
algebra and ϕ : A → C is a unital linear functional. We define the
(free or non-crossing) cumulants

kn : An → C (n ∈ N)

(indirectly) by the following system of equations:

ϕ(a1 . . . an) =
∑

π∈NC(n)

kπ[a1, . . . , an] (a1, . . . , an ∈ A),

where kπ denotes a product of cumulants according to the block struc-
ture of π:

kπ[a1, . . . , an] := kV1 [a1, . . . , an] . . . kVr [a1, . . . , an]

for π = {V1, . . . , Vr} ∈ NC(n)

and

kV [a1, . . . , an] := k#V (av1 , . . . , avl
) for V = (v1, . . . , vl).

2.5. Remarks and Examples. 1) Note: the above equations have
the form

ϕ(a1 . . . an) = kn(a1, . . . , an) + smaller order terms

and thus they can be resolved for the kn(a1, . . . , an) in a unique way.
2) Examples:

• n = 1

ϕ(a1) = k [a1] = k1(a1),

thus

k1(a1) = ϕ(a1).
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• n = 2

ϕ(a1a2) = k [a1, a2] + k [a1, a2]

= k2(a1, a2) + k1(a1)k1(a2),

thus
k2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2).

• n = 3

ϕ(a1a2a3) = k [a1, a2, a3] + k [a1, a2, a3] + k [a1, a2, a3]

+ k [a1, a2, a3] + k [a1, a2, a3]

= k3(a1, a2, a3) + k1(a1)k2(a2, a3) + k2(a1, a2)k1(a3)

+ k2(a1, a3)k1(a2) + k1(a1)k1(a2)k1(a3),

and thus

k3(a1, a2, a3) = ϕ(a1a2a3)− ϕ(a1)ϕ(a2a3)− ϕ(a1a3)ϕ(a2)

− ϕ(a1a2)ϕ(a3) + 2ϕ(a1)ϕ(a2)ϕ(a3).

3) For n = 4 we consider the special case where all ϕ(ai) = 0. Then
we have

k4(a1, a2, a3, a4) = ϕ(a1a2a3a4)− ϕ(a1a2)ϕ(a3a4)− ϕ(a1a4)ϕ(a2a3).

4) The kn are multi-linear functionals in their n arguments.

The meaning of the concept ‘cumulants’ for freeness is shown by the
following theorem.

2.6. Theorem. Consider a1, . . . , am ∈ A. Then the following two
statements are equivalent:

i) a1, . . . , am are free.
ii) mixed cumulants vanish, i.e.: We have for all n ≥ 2 and for all

1 ≤ i(1), . . . , i(n) ≤ m:

kn(ai(1), . . . , ai(n)) = 0,

whenever there exist 1 ≤ p, q ≤ n with i(p) 6= i(q).

2.7. Remarks. 1) An example of the vanishing of mixed cumulants is
that for a, b free we have k3(a, a, b) = 0, which, by the definition of k3

just means that

ϕ(aab)− ϕ(a)ϕ(ab)− ϕ(aa)ϕ(b)− ϕ(ab)ϕ(a) + 2ϕ(a)ϕ(a)ϕ(b) = 0.

This vanishing of mixed cumulants in free variables is of course just a
reorganization of the information about joint moments of free variables
– but in a form which is much more useful for many applications.
2) The above characterization of freeness in terms of cumulants is the
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translation of the definition of freeness in terms of moments – by using
the relation between moments and cumulants from Definition 2.4. One
should note that in contrast to the characterization in terms of moments
we do not require that i(1) 6= i(2) 6= · · · 6= i(n) or ϕ(ai) = 0. (That’s
exactly the main part of the proof of that theorem: to show that on
the level of cumulants the assumption ‘centered’ is not needed and that
‘alternating’ can be weakened to ‘mixed’.) Hence the characterization
of freeness in terms of cumulants is much easier to use in concrete
calculations.

3. Addition of free variables

3.1. Notation. For a random variable a ∈ A we put

ka
n := kn(a, . . . , a)

and call (ka
n)n≥1 the (free) cumulants of a.

Our main theorem on the vanishing of mixed cumulants in free vari-
ables specialises in this one-dimensional case to the linearity of the
cumulants.

3.2. Proposition. Let a and b be free. Then we have

ka+b
n = ka

n + kb
n for all n ≥ 1.

Proof. We have

ka+b
n = kn(a + b, . . . , a + b)

= kn(a, . . . , a) + kn(b, . . . , b)

= ka
n + kb

n,

because cumulants which have both a and b as arguments vanish by
Theorem 2.6. �

Thus, the addition of free random variables is easy to describe on the
level of cumulants; the cumulants are additive under this operation. It
remains to make the connection between moments and cumulants as
explicit as possible. On a combinatorial level, our definition specializes
in the one-dimensional case to the following relation.
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3.3. Proposition. Let (mn)n≥1 and (kn)n≥1 be the moments and free
cumulants, respectively, of some random variable. The connection be-
tween these two sequences of numbers is given by

mn =
∑

π∈NC(n)

kπ,

where

kπ := k#V1 · · · k#Vr for π = {V1, . . . , Vr}.
Example: For n = 3 we have

m3 = k + k + k + k + k

= k3 + 3k1k2 + k3
1.

For concrete calculations, however, one would prefer to have a more
analytical description of the relation between moments and cumulants.
This can be achieved by translating the above relation to corresponding
formal power series.

3.4. Theorem. Let (mn)n≥1 and (kn)n≥1 be two sequences of complex
numbers and consider the corresponding formal power series

M(z) := 1 +
∞∑

n=1

mnz
n,

C(z) := 1 +
∞∑

n=1

knz
n.

Then the following three statements are equivalent:

(i) We have for all n ∈ N

mn =
∑

π∈NC(n)

kπ =
∑

π={V1,...,Vr}∈NC(n)

k#V1 . . . k#Vr .

(ii) We have for all n ∈ N (where we put m0 := 1)

mn =
n∑

s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is=n−s

ksmi1 . . . mis .

(iii) We have

C[zM(z)] = M(z).

Proof. We rewrite the sum

mn =
∑

π∈NC(n)

kπ
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in the way that we fix the first block V1 of π (i.e. that block which
contains the element 1) and sum over all possibilities for the other
blocks; in the end we sum over V1:

mn =
n∑

s=1

∑
V1 with #V1 = s

∑
π∈NC(n)

where π = {V1, . . . }

kπ.

If

V1 = (v1 = 1, v2, . . . , vs),

then π = {V1, . . . } ∈ NC(n) can only connect elements lying between
some vk and vk+1, i.e. π = {V1, V2, . . . , Vr} such that we have for all
j = 2, . . . , r: there exists a k with vk < Vj < vk+1. There we put

vs+1 := n + 1.

Hence such a π decomposes as

π = V1 ∪ π̃1 ∪ · · · ∪ π̃s,

where

π̃j is a non-crossing partition of {vj + 1, vj + 2, . . . , vj+1 − 1}.

For such π we have

kπ = k#V1kπ̃1 . . . kπ̃s = kskπ̃1 . . . kπ̃s ,

and thus we obtain

mn =
n∑

s=1

∑
1=v1<v2<···<vs≤n

∑
π=V1∪π̃1∪···∪π̃s

π̃j∈NC(vj+1,...,vj+1−1)

kskπ̃1 . . . kπ̃s

=
n∑

s=1

ks

∑
1=v1<v2<···<vs≤n

( ∑
π̃1∈NC(v1+1,...,v2−1)

kπ̃1

)
. . .

( ∑
π̃s∈NC(vs+1,...,n)

kπ̃s

)
=

n∑
s=1

ks

∑
1=v1<v2<···<vs≤n

mv2−v1−1 . . . mn−vs

=
n∑

s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is+s=n

ksmi1 . . . mis (ik := vk+1 − vk − 1).

This yields the implication (i) =⇒ (ii).
We can now rewrite (ii) in terms of the corresponding formal power
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series in the following way (where we put m0 := k0 := 1):

M(z) = 1 +
∞∑

n=1

znmn

= 1 +
∞∑

n=1

n∑
s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is=n−s

ksz
smi1z

i1 . . . misz
is

= 1 +
∞∑

s=1

ksz
s
( ∞∑

i=0

miz
i
)s

= C[zM(z)].

This yields (iii).
Since (iii) describes uniquely a fixed relation between the numbers
(kn)n≥1 and the numbers (mn)n≥1, this has to be the relation (i). �

If we rewrite the above relation between the formal power series in
terms of the Cauchy transform

G(z) :=
∞∑

n=0

mn

zn+1

and the R-transform

R(z) :=
∞∑

n=0

kn+1z
n,

then we obtain Voiculescu’s formula.

3.5. Corollary. The relation between the Cauchy transform G(z) and
the R-transform R(z) of a random variable is given by

G[R(z) +
1

z
] = z.

Proof. We just have to note that the formal power series M(z) and
C(z) from Theorem 3.4 and G(z), R(z), and K(z) = R(z) + 1

z
are

related by:

G(z) =
1

z
M(

1

z
)

and

C(z) = 1 + zR(z) = zK(z), thus K(z) =
C(z)

z
.

This gives

K[G(z)] =
1

G(z)
C[G(z)] =

1

G(z)
C[

1

z
M(

1

z
)] =

1

G(z)
M(

1

z
) = z,
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thus K[G(z)] = z and hence also

G[R(z) +
1

z
] = G[K(z)] = z.

�

3.6. Free convolution. The above results give us a quite effective
tool for calculating the distribution of the sum a + b of free variables
from the distribution of a and the distribution of b. In analogy with
the usual convolution (which corresponds to the sum of independent
random variables) we introduce the notion � of free convolution as
operation on probability measures by

µa+b = µa � µb if a, b are free.

Then we know that free cumulants and the R-transform linearize this
free convolution.

In particular, we also have the free convolution powers

µ�r := µ � · · ·� µ (r-times)

of µ, which are in terms of cumulants characterized by

kn(µ�r) = r · kn(µ).

If we are given free variables a and b and we want to calculate the
distribution of a + b, then we calculate the R-transforms Ra and Rb

and get thus by the linearization property the R-transform of a + b,

Ra+b = Ra + Rb.

It remains to extract the distribution out of this. From the R-transform
we can get the Cauchy transform Ga+b by Corollary 3.5, and then we
use the classical Stietljes inversion formula for extracting the distri-
bution from this. In general, the relation between R-transform and
Cauchy transform might lead to equations which have no analytic so-
lutions, however, in many concrete case these equations can be solved.
For example, if we put µ = 1

2
(δ0 + δ1), then the above machinery shows

that the distribution µ � µ is given by the arcsine law.

3.7. Application: random sum of matrices [7]. Fix two (com-
pactly supported) probability measures µ and ν on the real line and
consider deterministic (e.g., diagonal) N × N -matrices AN and CN ,
whose eigenvalue distribution converges, for N →∞, towards the given
measures. To put it in the language introduced in Section 1, we assume
that

AN → a with µa = µ
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and
CN → c with µc = ν.

Now we rotate CN against AN randomly by replacing CN by

BN := UNCNU∗
N ,

where UN is a random Haar unitary matrix from the ensemble of uni-
tary N ×N -matrices equipped with the Haar measure. Of course, the
eigenvalue distribution of BN is the same as the one of CN , however,
any definite relation between the eigenspaces of AN and the eigenspaces
of CN has now been destroyed. AN and BN are in the limit N → ∞
generic realizations of the given eigenvalue distributions µ and ν. The
question which we want to address is: What is the eigenvalue distribu-
tion of the sum AN + BN in the limit N → ∞, i.e. what can we say
about

AN + BN →?

A version of the theorem of Voiculescu about the connection between
random matrices and freeness tells us that AN and BN become free in
the limit N →∞, i.e. it yields that

(AN , BN) → (a, b) with µa = µ, µb = ν, and a, b free.

Thus we know that the eigenvalue distribution of AN + BN converges
towards the distribution of a+ b where a and b are free. But the distri-
bution of a + b can be calculated with our tools from free probability
in a very effective and systematic way by using the R-transform ma-
chinery. For example, if we take the generic sum of two projections of
trace 1/2, (i.e., µ = ν = 1

2
(δ0 +δ1), then our example from above shows

us that the distribution of

1
0

1
0

1
. . .

 + UN



1
0

1
0

1
. . .

 U∗
N ,

is, in the limit N →∞, given by the arcsine law.

4. Multiplication of free variables

Finally, to show that our description of freeness in terms of cumulants
has also a significance apart from dealing with additive free convolution,
we will apply it to the problem of the product of free random variables:
Consider a1, . . . , an, b1, . . . , bn such that {a1, . . . , an} and {b1, . . . , bn}
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are free. We want to express the distribution of the random variables
a1b1, . . . , anbn in terms of the distribution of the a’s and of the b’s.

4.1. Notation. 1) Analogously to kπ we define for

π = {V1, . . . , Vr} ∈ NC(n)

the expression

ϕπ[a1 . . . , an] := ϕV1 [a1, . . . , an] . . . ϕVr [a1, . . . , an],

where

ϕV [a1, . . . , an] := ϕ(av1 . . . avl
) for V = (v1, . . . , vl).

Examples:

ϕ [a1, a2, a3] = ϕ(a1a2a3)

ϕ [a1, a2, a3] = ϕ(a1)ϕ(a2a3)

ϕ [a1, a2, a3] = ϕ(a1a2)ϕ(a3)

ϕ [a1, a2, a3] = ϕ(a1a3)ϕ(a2)

ϕ [a1, a2, a3] = ϕ(a1)ϕ(a2)ϕ(a3)

2) Let σ, π ∈ NC(n). Then we write

σ ≤ π

if each block of σ is contained as a whole in some block of π, i.e. σ can
be obtained out of π by refinement of the block structure.
Example:

{(1), (2, 4), (3), (5, 6)} ≤ {(1, 5, 6), (2, 3, 4)}

With these notations we can generalize the relation

ϕ(a1 . . . an) =
∑

π∈NC(n)

kπ[a1, . . . , an]

in the following way.

ϕσ[a1, . . . , an] =
∑

π∈NC(n)
π≤σ

kπ[a1, . . . , an].
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Consider now

{a1, . . . , an}, {b1, . . . , bn} free.

We want to express alternating moments in a and b in terms of moments
of a and moments of b. We have

ϕ(a1b1a2b2 . . . anbn) =
∑

π∈NC(2n)

kπ[a1, b1, a2, b2, . . . , an, bn].

Since the a’s are free from the b’s, Theorem 2.6 tells us that only such
π contribute to the sum whose blocks do not connect a’s with b’s. But
this means that such a π has to decompose as

π = π1 ∪ π2 where π1 ∈ NC(1, 3, 5, . . . , 2n− 1)

π2 ∈ NC(2, 4, 6, . . . , 2n).

Thus we have

ϕ(a1b1a2b2 . . . anbn)

=
∑

π1∈NC(odd),π2∈NC(even)
π1∪π2∈NC(2n)

kπ1 [a1, a2, . . . , an] · kπ2 [b1, b2, . . . , bn]

=
∑

π1∈NC(odd)

(
kπ1 [a1, a2, . . . , an] ·

∑
π2∈NC(even)

π1∪π2∈NC(2n)

kπ2 [b1, b2, . . . , bn]
)
.

Note now that for a fixed π1 there exists a maximal element σ with
the property π1∪σ ∈ NC(2n) and that the second sum is running over
all π2 ≤ σ.

4.2. Definition. Let π ∈ NC(n) be a non-crossing partition of the
numbers 1, . . . , n. Introduce additional numbers 1̄, . . . , n̄, with alter-
nating order between the old and the new ones, i.e. we order them in
the way

11̄22̄ . . . nn̄.

We define the complement K(π) of π as the maximal σ ∈ NC(1̄, . . . , n̄)
with the property

π ∪ σ ∈ NC(1, 1̄, . . . , n, n̄).

If we present the partition π graphically by connecting the blocks in
1, . . . , n, then σ is given by connecting as much as possible the numbers
1̄, . . . , n̄ without getting crossings among themselves and with π.

(This natural notation of the complement of a non-crossing partition
is also due to Kreweras [2]. Note that there is no analogue of this for
the case of all partitions.)
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With this definition we can continue our above calculation as follows:

ϕ(a1b1a2b2 . . . anbn)

=
∑

π1∈NC(n)

(
kπ1 [a1, a2, . . . , an] ·

∑
π2∈NC(n)
π2≤K(π1)

kπ2 [b1, b2, . . . , bn]
)

=
∑

π1∈NC(n)

kπ1 [a1, a2, . . . , an] · ϕK(π1)[b1, b2, . . . , bn].

Thus we have proved the following result.

4.3. Theorem. Consider

{a1, . . . , an}, {b1, . . . , bn} free.

Then we have

ϕ(a1b1a2b2 . . . anbn) =
∑

π∈NC(n)

kπ[a1, a2, . . . , an] · ϕK(π)[b1, b2, . . . , bn].

Similar to the additive case one can translate this combinatorial de-
scription of the product of free variables in an analytic way in terms
of the so-called S-transfrom. However, this is more complicated as in
the case of the R-transform and we will not address this problem here.
Instead, we want to show that the above combinatorial description of
the product of free variables can lead to quite explicit (and unexpected)
results without running through an analytic reformulation. Such a re-
sult is given in our final application to the problem of the compression
of a random matrix.

4.4. Application: Compression of random matrix. Consider, as
in Section 3.7, a sequence of deterministic N × N -matrices CN with
prescribed eigenvalue distribution µ in the limit N →∞ and consider
the randomly rotated version AN := UNCNU∗

N of this matrix. The
question we want to address is the following: Can we calculate the
eigenvalue distribution of upper left corners of the matrices AN . For-
mally, we get these corners by compressing AN with projections of the
form

PN :=



1
. . .

1
0

. . .
0


,
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where trN(PN) → α for some fixed α with 0 < α ≤ 1. Thus we
ask for the eigenvalue distribution of PNANPN in the limit N → ∞.
(However, we have to calculate this in the compressed space, throwing
away the bunch of trivial zero eigenvalues outside of the non-trivial
corner of PNANPN , i.e., we consider PNANPN not as N × N -matrix,
but as αN × αN -matrix.)

Now, again by Voiculescu’s theorem about asymptotic freeness of
random matrices, we know that

(AN , PN) → (a, p),

where a has the prescribed distribution µ, p is a projection of trace
α and a and p are free. Thus, the answer for our question on the
distribution of corners in randomly rotated matrices is provided by
calculating the distribution of pap in the compressed space, i.e. by
calculating the renormalized moments

1

α
ϕ[(pap)n],

which is, by the trace property of ϕ and the projection property p2 = p,
the same as

1

α
ϕ[(ap)n].

This fits now exactly in the above frame of calculating the moments of
products of free variables, in the special case where the second variable
is a projection of trace α. Using pk = p for all k ≥ 1 and ϕ(p) = α
gives

ϕK(π)[p, p, . . . , p] = ϕ(p . . . p)ϕ(p . . . p) · · · = α|K(π)|,

where |K(π)| denotes the number of blocks of K(π). We can express
this number of blocks also in terms of π, since we always have the
relation

|π|+ |K(π)| = n + 1.

Thus we can continue our calculation of Theorem 4.3 in this case as

1

α
ϕ[(ap)n] =

1

α

∑
π∈NC(n)

kπ[a, . . . , a]αn+1−|π|

=
∑

π∈NC(n)

1

α|π|
kπ[αa, . . . , αa],

which shows that

kn(pap, . . . , pap) =
1

α
kn(αa, . . . , αa)
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for all n. By our remarks on the additive free convolution, this gives
the surprising result that the renormalized distribution of pap is given
by

µpap = µ�1/α
αa .

In particular, for α = 1/2, we have

µpap = µ�2
1/2a = µ1/2a � µ1/2a.

This means that the distribution of the upper left corner of size 1/2 of
a randomly rotated matrix is, apart from rescaling with the factor 1/2,
the same as the distribution of the sum of the considered matrix and
another randomly rotated copy of itself. E.g., if we take the example
µ = 1

2
(δ0 + δ1), then the corner of size 1/2 of such a randomly rotated

projection has as eigenvalue distribution the arcsine law.
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