
Student Number

Queen’s University

Department of Mathematics and Statistics

MTHE/STAT 353

Final Examination April 16, 2014
Instructor: G. Takahara

• “Proctors are unable to respond to queries about the interpretation of exam ques-

tions. Do your best to answer exam questions as written.”

• “The candidate is urged to submit with the answer paper a clear statement of

any assumptions made if doubt exists as to the interpretation of any question that

requires a written answer.”

• Formulas and tables are attached.

• An 8.5× 11 inch sheet of notes (both sides) is permitted.

• Simple calculators are permitted (Casio 991, red, blue, or gold sticker). HOWEVER,

do reasonable simplifications.

• Write the answers in the space provided, continue on the backs of pages if needed.

• SHOW YOUR WORK CLEARLY. Correct answers without clear work showing

how you got there will not receive full marks.

• Marks per part question are shown in brackets at the right margin.

Marks: Please do not write in the space below.

Problem 1 [10] Problem 4 [10]

Problem 2 [10] Problem 5 [10]

Problem 3 [10] Problem 6 [10]

Total: [60]



MTHE/STAT 353 -- Final Exam, April 16, 2014 Page 2 of 9

1. Let X and Y be independent and identically distributed uniform random variables on

the interval (0, 1). Define U = 1
2
(X + Y ) to be the average and define V = X.

(a) Find the joint probability density function of (U, V ) and draw the sample space of

(U, V ). (Be careful when determining the sample space of (U, V ) – it will affect your

answer in part(b).) [6]

Solution: The inverse transformation is X = V and Y = 2U − V . The matrix of partial

derivatives of the inverse transformation is[
0 1

2 −1

]

with determinant −2. The joint pdf of (X, Y ) is

fXY (x, y) =

{
1 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise.

So the joint pdf of (U, V ) is

fUV (u, v) =

{
2 for (u, v) ∈ SUV
0 otherwise,

where SUV is the sample space of (U, V ), determined by the constraints 0 ≤ v ≤ 1 and

0 ≤ 2u − v ≤ 1, or 0 ≤ v ≤ 1 and v/2 ≤ u ≤ (v + 1)/2. The sample space of (U, V ) is

plotted in Figure 1.
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Figure 1: Sample space of (U, V ).



MTHE/STAT 353 -- Final Exam, April 16, 2014 Page 3 of 9

(b) Find the marginal probability density function of U . [4]

Solution: To get the marginal pdf of U we integrate the joint pdf fUV (u, v) over the

variable v from −∞ to ∞. From Figure 1 we see that the limits of integration are

different depending on whether u ∈ [0, .5] or u ∈ (.5, 1]. For u ∈ [0, .5] we have

fU(u) =

∫ 2u

0

(2)dv = 4u.

For u ∈ (.5, 1] we have

fU(u) =

∫ 1

2u−1
(2)dv = 2(1− (2u− 1)) = 4(1− u).

Clearly, for u /∈ [0, 1] we have fU(u) = 0. To summarize,

fU(u) =


4u for u ∈ [0, .5]

4(1− u) for u ∈ (.5, 1]

0 otherwise.
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2. A mouse is placed at the starting point in a maze. There are three possible directions

the mouse can travel from the starting point - one direction to the left, one to the right

and one straight ahead. If the mouse travels to the left, then on average it will wander the

maze for 2 minutes and then return to the starting point. If the mouse travels straight

ahead then on average it will wander the maze for 1 minute and then find the exit to the

maze. If the mouse travels to the right then on average it will wander the maze for 5

minutes and then return to the starting point.

(a) Under the hypothesis that whenever the mouse is at the starting point it chooses one

of the three possible directions at random and starts travelling in the chosen direction,

find the expected amount of time the mouse spends in the maze before exiting. [5]

Solution: Letting T denote the amount of time the mouse spends in the maze before

exiting, and conditioning on the first move of the mouse, we have

E[T ] =
1

3

(
E[T

∣∣ left] + E[T
∣∣ right] + E[T

∣∣ straight ahead]
)

=
1

3

(
2 + E[T ] + 1 + 5 + E[T ]

)
=

1

3
(8 + 2E[T ]).

Therefore, 1
3
E[T ] = 8

3
, or E[T ] = 8 minutes.

(b) Under the hypothesis that the mouse learns, so that whenever it is at the starting

point it chooses at random one of the directions it has not tried before, find the expected

amount of time the mouse spends in the maze before exiting. [5]

Solution: We begin as in part(a), but now

E[T
∣∣ left] = 2 +

1

2
(1 + 5 + 1) =

11

2

and

E[T
∣∣ right] = 5 +

1

2
(1 + 2 + 1) = 7.

Therefore,

E[T ] =
1

3

(
11

2
+ 1 + 7

)
=

9

2
= 4.5 minutes.
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3. Suppose that k balls are randomly placed into n boxes (which are initially empty). For

i = 1, . . . , n, let

Xi =

{
1 if box i is empty

0 if box i has one or more balls.

(a) Find the expected number of empty boxes. [2]

Solution: We have P (Xi = 1) = (n−1
n

)k since each ball independently will not end up in

box i with probability n−1
n

. The number of empty boxes is X1 + . . .+Xn so the expected

number of empty boxes is E[X1] + . . .+ E[Xn] = n(n−1
n

)k.

(b) Find Cov(X1, X2). [5]

Solution: E[X1] = E[X2] = (n−1
n

)k were computed in part(a). To compute Cov(X1, X2)

we further need E[X1X2]. This is given by

E[X1X2] = P (X1 = 1, X2 = 1) =

(
n− 2

n

)k
,

since each of the k balls independently does not end up in either box 1 or box 2 with

probability n−2
n

. Then

Cov(X1, X2) = E[X1X2]− E[X1]E[X2] =

(
n− 2

n

)k
−
(
n− 1

n

)2k

.

(c) Show that X1 and X2 are negatively correlated. [3]

Solution: To show that X1 and X2 are negatively correlated it suffices to show that the

covariance computed in part(b) is negative. For this it is sufficient to show that

n− 2

n
<

(
n− 1

n

)2

⇔ n(n− 2) < (n− 1)2

⇔ n2 − 2n < n2 − 2n+ 1

which is true for any positive n.
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4. (a) Suppose that {Xn} is a sequence of zero-mean random variables and X is a zero-

mean random variable, and suppose that E[(Xn − X)2] ≤ C/np for every n, for some

constants C and p > 1. Show that Xn → X almost surely. [4]

Solution: Let ε > 0 be given. Since E[Xn − X] = 0 we have by Chebyshev’s inequality

that

P (|Xn −X| > ε) ≤ Var(Xn −X)

ε2
=
E[(Xn −X)2]

ε2
≤ C

ε2np
.

Therefore,
∞∑
n=1

P (|Xn −X| > ε) ≤
∞∑
n=1

C

ε2np
<∞

if p > 1. By a sufficient condition from class this implies that Xn → X almost surely.

(b) Suppose that {Xn} is a sequence of nonnegative random variables. Show that

E[Xn] → 0 as n → ∞ implies that Xn → 0 in probability, but that the converse is false

in general. [6]

Solution: Suppose that E[Xn]→ 0. Let ε > 0 be given. Then by Markov’s inequality

P (|Xn − 0| > ε) ≤ E[Xn]

ε
→ 0

as n → ∞. Hence, Xn → 0 in probability. To prove that the reverse implication is false

in general we give a counterexample. Let the distribution of Xn be given by

Xn =

{
0 with probability 1− 1

n

n with probability 1
n

Then if ε > 0 is given P (|Xn − 0| > ε) = P (Xn = n) = 1
n
→ 0 as n → ∞, so Xn → 0 in

probability. However, E[Xn] = n( 1
n
) = 1 for all n, which does not converge to 0.
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5. (a) Give explicitly a sequence of random variables {Xn} (i.e., give the probability space

Ω, the probability measure P on Ω, and the random variables (functions) from Ω to R)

such that Xn → 0 almost surely but it does not hold that
∑∞

n=1 P (|Xn− 0| > ε) <∞ for

any ε > 0. [5]

Solution: Let Ω = [0, 1] and P the uniform distribution on [0, 1]. Define Xn as follows:

Xn(ω) =

{
0 if ω ∈ (1/n, 1]

1 if ω ∈ [0, 1/n]

Then for ω ∈ (0, 1], Xn(ω) = 0 for all n > 1/ω so Xn(ω) → 0 as n → ∞. Since

P ((0, 1]) = 1, we have that Xn → 0 almost surely. If ε > 0 is given then P (|Xn − 0| >
ε) = P (Xn = 1) = 1

n
. Therefore,

∞∑
n=1

P (|Xn − 0| > ε) =
∞∑
n=1

1

n
,

which is a divergent sum.

(b) Suppose that {Xn} and {Yn} are sequences of random variables and X and Y are

random variables such that Xn → X in distribution and Yn → Y in distribution. Give

an example where it is not true that Xn + Yn converges to X + Y in distribution. Hint :

Consider Y = −X. [5]

Solution: Let W and Z be independent N(0, 1) random variables. Let Xn = W for all n

and Yn = Z for all n. Let X = W and Y = −W . It is easy to see that X and Y are both

N(0, 1), and it is clear that Xn → X in distribution and Yn → Y in distribution. But

X + Y = 0 whereas Xn + Yn is distributed as N(0, 2) for all n. Therefore, it is not true

that Xn + Yn converges to X + Y in distribution.
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6. Let {Xn} be a sequence of independent and identically distributed random variables

with mean µ and variance σ2. Let g be a strictly monotone function (strictly increasing or

strictly decreasing) and differentiable. Find directly using the central limit theorem (not

the delta method), the limit of P (g(Xn) ≤ g(µ)+t/
√
n) as n→∞, whereXn = 1

n

∑n
i=1Xi

and t > 0 is a fixed real number. Notes: (1) You may assume that if {Yn} is a sequence

of random variables and Y is another random variables such that Yn → Y in distribution

and if {yn} is a sequence of numbers such that yn → y, where the distribution function

of Y is continuous at y, then P (Yn ≤ yn) → P (Y ≤ y); (2) Recall from calculus that if

y = g(x), where g is monotone and differentiable, then d
dy
g−1(y) = [ d

dx
g(x)]−1. [10]

Solution: We first write

P (g(Xn ≤ g(µ) + t/
√
n) = P (Xn ≤ g−1(g(µ) + t/

√
n))

= P

(
Xn − µ
σ/
√
n
≤ g−1(g(µ) + t/

√
n)− µ

σ/
√
n

)
= P

(
Xn − µ
σ/
√
n
≤ yn

)
,

where

yn =
g−1(g(µ) + t/

√
n)− µ

σ/
√
n

.

Then if yn → y as n → ∞, by the central limit theorem and Note 1, the probability in

question will converge to Φ(y), where Φ(·) is the standard normal distribution function.

It remains to find limn→∞ yn. For a more convenient variable we can set h = 1/
√
n, then

lim
n→∞

yn = lim
h↓0

g−1(g(µ) + th)− µ
σh

. (1)

Both numerator and denominator above go to 0 as h ↓ 0 so we apply L’Hôspital’s rule. For

the denominator, d
dh
σh = σ. For the numerator, with y = g(µ)+th and x = g−1(g(µ)+th)

and applying Note 2, we have (first applying the chain rule)

d

dh
g−1(g(µ) + th)− µ =

d

dy
g−1(y)t =

t
d
dx
g(x)

=
t

d
dx
g(g−1(g(µ) + th))

.

As h ↓ 0 the denominator in the final expression above goes to g′(µ). Going back to

Eq.(1) we have that limn→∞ yn = t
σg′(µ)

, and so

P (g(Xn ≤ g(µ) + t/
√
n)→ Φ

(
t

σg′(µ)

)
as n → ∞ (which of course is easily obtained if one resorted to applying the Delta

method).
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Formula Sheet

Special Distributions

Uniform on the interval (0, 1):

f(x) =

1 if 0 < x < 1

0 otherwise.
E[X] =

1

2
, Var(X) =

1

12
.


