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1. Let X1, . . . , Xn be independent and identically distributed random variables, each

with a Uniform distribution on the interval (0, 1). Let X = min(X1, . . . , Xn) and Y =

max(X1, . . . , Xn).

(a) Find P (X < 1
2
< Y ). [6]

Solution: The joint pdf of (X, Y ) is

f(x, y) =

{
n(n− 1)(y − x)n−2 for 0 < x < y < 1

0 otherwise.

Therefore,

P (X <
1

2
< Y ) =

∫ 1

1/2

∫ 1/2

0

n(n− 1)(y − x)n−2dxdy

=

∫ 1

1/2

n

[
−(y − x)n−1

∣∣∣∣1/2
0

]
dy

=

∫ 1

1/2

nyn−1dy −
∫ 1

1/2

n

(
y − 1

2

)n−1

dy

= yn
∣∣∣∣1
1/2

−
(
y − 1

2

)n∣∣∣∣1
1/2

= 1− 1

2n
− 1

2n

= 1− 1

2n−1
.
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(b) Find E[X3]. [4]

Solution: The marginal pdf of X is

fX(x) =

{
n(1− x)n−1 for 0 < x < 1

0 otherwise.

Therefore,

E[X3] =

∫ 1

0

x3n(1− x)n−1dx = n

∫ 1

0

x3(1− x)n−1dx.

The integral on the right is B(4, n), where B(·, ·) is the beta function. So

E[X3] = nB(4, n) = n
Γ(4)Γ(n)

Γ(n+ 4)
=

6n

(n+ 3)(n+ 2)(n+ 1)n
=

6

(n+ 3)(n+ 2)(n+ 1)
.
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2. An urn contains 10 red balls, 10 blue balls, and 10 green balls. Ten balls are drawn at

random without replacement. For each green ball in the sample, it is replaced by a red

ball with probability 1/2 and by a blue ball with probability 1/2, independently for each

green ball in the sample. Let X denote the total number of red balls and Y the total

number of blue balls in the sample after the green balls are replaced. Find Cov(X, Y ).

[10]

Solution: Write X = X1 + . . . + X10 and Y = Y1 + . . . + Y10, where Xi and Yi are the

indicators that the ith ball drawn ends up being red or blue, respectively. Then

Cov(X, Y ) = Cov
( 10∑
i=1

Xi,
10∑
j=1

Yj

)
=

10∑
i=1

10∑
j=1

Cov(Xi, Yj) = 10Cov(X1, Y1)+90Cov(X1, Y2),

where the last equality follows because, by symmetry, Cov(Xi, Yi) is the same for all i and

Cov(Xi, Yj) is the same for all i 6= j. We have

Cov(X1, Y1) = E[X1Y1]− E[X1]E[Y1]

= P (X1 = 1, Y1 = 1)− P (X1 = 1)P (Y1 = 1) = −P (X1 = 1)2,

where the last equality follows because, again by symmetry, P (X1 = 1) = P (Y1 = 1).

Similarly, we also have P (X1 = 1) = P (Y2 = 1) and so

Cov(X1, Y2) = P (X1 = 1, Y2 = 1)− P (X1 = 1)2.

So it boils down to computing P (X1 = 1) and P (X1 = 1, Y2 = 1). The event {X1 = 1}
occurs if and only if either the first ball is red or the first ball is green and it is replaced

by a red ball. The probability of this is 10
30

+ 10
30
× 1

2
= 1

2
. The event {X1 = 1, Y2 = 1}

occurs if and only if (i) the first ball is red and the second ball is blue; (ii) the first ball

is green and is replaced by a red ball and the second ball is blue; (iii) the first ball is red

and the second ball is green and is replaced by a blue ball; or (iv) the first ball is green

and is replaced by a red ball and the second ball is green and is replaced by a blue ball.

The probability of the union of (i) to (iv) is (note (ii) and (iii) have the same probability)

P (X1 = 1, Y2 = 1) =

(
10

30

)(
10

29

)
+ 2

(
10

30

)(
1

2

)(
10

29

)
+

(
10

30

)(
1

2

)(
9

29

)(
1

2

)
=

20

87
+

3

116
=

89

348
.

Then

Cov(X, Y ) = −10

4
+

90× 89

348
− 90

4
=

90× 89− 100× 87

348
= −690

348
= −115

58
≈ −1.983.
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3. Let M > 1 be a given positive constant. Let X,X1, X2, . . . be nonnegative random

variables.

(a) Suppose that E[Xn] ≤M for all n ≥ 1. Show that P (X > 1 + ε) = 0 for any ε > 0.

[5]

Solution: Let ε > 0 be given. By Markov’s inequality

P (X > 1 + ε) = P (Xn > (1 + ε)n) ≤ E[Xn]

(1 + ε)n
≤ M

(1 + ε)n
,

which holds for all n ≥ 1. Since the right hand side can be made arbitrarily small the

only way the inequality can hold is if P (X > 1 + ε) = 0.

(b) Suppose that E[Xn
n ] ≤M for all n. Show by counterexample that P (Xn > 1+ε) = 0

for any ε > 0 is not necessarily true. [5]

Solution: Let

Xn =

{
0 with probability 1− 1

Mn−1

M with probability 1
Mn−1

Then E[Xn
n ] = Mn × 1

Mn−1 = M for all n but for ε ∈ (0, 1) we have P (Xn > 1 + ε) =

P (Xn = M) = 1
Mn−1 > 0.
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4. Let X have a Gamma(3, 3) distribution. Conditional on X = x let Z have a normal

distribution with mean x and variance 2. Finally, let Y = eZ . Find E[Y ] and Var(Y ).

[10]

Solution: Conditioned on X = x, E[Y ] is the moment generating function of a N(x, 2)

distribution evaluated at 1. Letting Mx(·) denote this mgf, we have Mx(t) = ext+t
2
, and

so E[Y
∣∣ X = x] = Mx(1) = ex+1. Similarly, E[Y 2

∣∣ X = x] = E[e2Z
∣∣ X = x] =

Mx(2) = e2x+4. Then by the law of total expectation, E[Y ] = E[eX+1] = eMX(1) and

E[Y 2] = E[e2X+4] = e4MX(2), where MX(·) is the moment generating function of X.

Since X has a Gamma(3, 3) distribution we have MX(t) =
(

3
3−t

)3
, and so

E[Y ] = e

(
3

2

)3

=
27e

8
≈ 9.174 and E[Y 2] = 27e4.

Then

Var(Y ) = E[Y 2]− E[Y ]2 = 27e4 −
(

27

8

)2

e2 ≈ 1390.
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5. Let X1, X2, . . . be a sequence of independent random variables, where Xn is Exponen-

tially distributed with mean 1/ lnnp, where p > 0 is a fixed constant.

(a) Does Xn converge in probability to a limiting random variable as n → ∞? If so,

give the limit and prove the convergence. If not, prove it. [4]

Solution: Since Xn is positive and E[Xn] is converging to 0, if Xn converges in probability

it should be to the constant 0. To prove this, let ε > 0 be given and compute

P (|Xn − 0| > ε) = P (Xn > ε) = e−ε lnnp =
1

nεp
→ 0

as n→∞. This proves that Xn →P 0.

(b) Does Xn converge almost surely to a limiting random variable as n → ∞? If so,

give the limit and prove the convergence. If not, prove it. [6]

Solution: If Xn converges almost surely it must be to the constant 0 since in part(a) it was

shown that Xn converges to 0 in probability, and almost sure convergence implies con-

vergence in probability. Since
∑

n
1
nεp

diverges for ε small enough the sufficient condition

for almost sure convergence is not satisfied, so it is possible that Xn does not converge

almost surely. To check this we compute

∞∏
n=m

P (Xn ≤ ε) = lim
M→∞

M∏
n=m

P (Xn ≤ ε) = lim
M→∞

M∏
n=m

(
1− 1

nεp

)
.

In particular, choosing ε = 1
p

we have

∞∏
n=m

P (Xn ≤ 1/p) = lim
M→∞

M∏
n=m

(
1− 1

n

)
= lim

M→∞

m− 1

M
= 0.

Thus, P (∪∞n=m{Xn > 1/p}) = 1 − P (∩∞n=m{Xn ≤ 1/p}) = 1 −∏∞n=m P (Xn ≤ 1/p) =

1 − 0 = 1 for every m, and so P (∩∞m=1 ∪∞n=m {Xn > 1/p}) = 1, since a countable

intersection of events of probability 1 has probability 1. If ω ∈ ∩∞m=1 ∪∞n=m {Xn > 1/p}
then Xn(ω) > 1/p for infinitely many n, so Xn(ω) does not converge to 0. So with

probability 1, Xn does not converge to 0 and so Xn does not converge almost surely to

any limit.
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6. Let X1, X2, . . . be independent and identically distributed random variables, each with

a Poisson distribution with mean 1. Let Sn = X1 + . . . + Xn for n ≥ 1 and let Mn(t) be

the moment generating function of Sn.

(a) Find the smallest n such that P (Mn(Sn) > 1) ≥ .99 using the exact probability. [6]

Solution: First, the common moment generating function of the Xi is

M(t) = E[etXi ] =
∞∑
k=0

etk
1

k!
e−1 = e−1

∞∑
k=0

(et)k

k!
= e−1ee

t

= ee
t−1.

Then Mn(t) = M(t)n = en(et−1) and Mn(Sn) = en(eSn−1). So

P (Mn(Sn) > 1) = P (en(eSn−1) > 1) = P (n(eSn − 1) > 0) = P (eSn > 1) = P (Sn > 0).

The exact distribution of Sn is Poisson(n), so P (Sn > 0) = 1 − P (Sn = 0) = 1 − e−n.

Setting this to .99 gives e−n = .01, or n = ln 100 = 4.605. So n = 5 is the smallest n.

(b) Find the smallest n such that P (Mn(Sn) > 1) ≥ .99 using the central limit theorem.

[4]

Solution: By the central limit theorem, the distribution of (Sn − n)/
√
n is approximated

by a N(0, 1) distribution, so that (from part(a)),

P (Mn(Sn) > 1) = P (Sn > 0) = P ((Sn − n)/
√
n > −√n) ≈ 1− Φ(−√n),

where Φ(·) is the standard normal cdf. Setting this to .99 gives Φ(−√n) = .01, or (from

the table) −√n = −2.33, or n = 5.429. So n = 6 is the smallest n according to this

approximation.
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Formula Sheet

Special Distributions

Beta distribution with parameters α > 0 and β > 0:

f(x) =


Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1 if 0 < x < 1

0 otherwise.

E[X] =
α

α + β
, Var(X) =

αβ

(α + β)2(α + β + 1)

α = 1 and β = 1 gives the Uniform distribution on (0, 1).

Gamma distribution with parameters r > 0 and λ > 0:

f(x) =

 λr

Γ(r)
xr−1e−λx if x > 0

0 otherwise.
E[X] =

r

λ
, Var(X) =

r

λ2

MX(t) =

(
λ

λ− t

)r
for t < λ.

r = 1 gives the Exponential distribution with mean 1/λ.

Normal distribution with mean µ and variance σ2 > 0:

f(x) =

 1√
2πσ

e−(x−µ)2/2σ2
if x ∈ R

0 otherwise.
E[X] = µ, Var(X) = σ2

MX(t) = eµt+t
2σ2/2 for t ∈ R.

µ = 0 and σ2 = 1 gives the standard normal distribution.

Poisson distribution with mean λ > 0:

f(k) =

λk

k!
e−λ if k = 0, 1, 2, . . .

0 otherwise.
E[X] = λ, Var(X) = λ

MX(t) = exp{λ(et − 1)} for t ∈ R.
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The distribution function, Φ(z), of a standard normal random variable

Note: Φ(−z) = 1 − Φ(z) for any z ∈ R.


