Queen's University
Department of Mathematics and Statistics
MTHE/STAT 353
Final Examination, Part 2 Solutions, 2020
Instructor: G. Takahara

INSTRUCTIONS:

- The exam is in two parts. This is Part 2 of the exam.
- Part 2 has 3 questions, each worth 10 marks. For each question, begin each solution at the start of a fresh page, and put your student number at the start of each solution.
- The 3 solutions for Part 2 are to be submitted through crowdmark. You should have received an email inviting you to submit your solutions for Part 2 to crowdmark. Upload each solution separately.
- THE DEADLINE FOR SUBMISSION OF PART 2 IS 12:00 NOON ON APRIL 15. THERE WILL BE ABSOLUTELY NO EXTENSIONS. YOU MUST ALLOW TIME TO PREPARE YOUR SOLUTIONS FOR UPLOAD TO CROWDMARK, SO PLAN ON COMPLETING THE EXAM BY 11AM ON APRIL 15. SO YOU HAVE 24 HOURS TO WRITE YOUR SOLUTIONS STARTING FROM 11AM ON APRIL 14, THOUGH YOU CAN WORK ON PART 2 FROM THE TIME IT IS POSTED TO THE COURSE WEBPAGE AT 7PM ON APRIL 13.
- Part 2 of the exam is open book. This means that you can use your notes, the textbook, and your computer.
- ABSOLUTELY ZERO COLLABORATION IS ALLOWED ON THE EXAM.

There is to be no collaboration in any form on any question on any part of the exam, either in person or remotely. All work on the exam must be completed on your own.

Instructions continued on page 2.

- "The candidate is urged to submit with the answer paper a clear statement of any assumptions made if doubt exists as to the interpretation of any question that requires a written answer."
- This material is copyrighted and is for the sole use of students registered in MTHE/STAT 353 and writing this examination. This material shall not be distributed or disseminated. Failure to abide by these conditions is a breach of copyright and may also constitute a breach of academic integrity under the University Senates Academic Integrity Policy Statement.
- You may write your solutions in the space provided, continuing on your own paper if needed, or you may write your solutions using your own paper.
- SHOW YOUR WORK CLEARLY. Correct answers without clear work showing how you got there will not receive full marks. Marks per part question are shown in brackets at the right margin.

Total: [30]

Student Number

1(a). Let X_{1}, \ldots, X_{n} be random variables, each with mean 0 and variance σ^{2}, but not necessarily independent or identically distributed. Assume that the correlation coefficient between any pair of the X_{i} 's is the same, and given by ρ. Show that

$$
\begin{equation*}
\rho \geq-\frac{1}{n-1}+P(|\bar{X}|>\sigma \sqrt{1-1 / n}) \tag{5}
\end{equation*}
$$

where $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
Solution: The variance of \bar{X} is
$\operatorname{Var}(\bar{X})=\frac{1}{n^{2}}\left(\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right)\right)=\frac{1}{n^{2}}\left(n \sigma^{2}+n(n-1) \rho \sigma^{2}\right)=\frac{\sigma^{2}}{n}(1+(n-1) \rho)$.
Since the mean of \bar{X} is zero, by Chebyshev's inequality we have

$$
P\left(|\bar{X}|>\sigma \sqrt{1-\frac{1}{n}}\right) \leq \frac{\operatorname{Var}(\bar{X})}{\sigma^{2}(1-1 / n)}=\frac{1+(n-1) \rho}{n-1}=\frac{1}{n-1}+\rho
$$

Therefore, the desired inequality follows.
(b) Let X_{1}, \ldots, X_{n} be independent Poisson(1) random variables and let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Let $k>1$ be given. Show that

$$
\begin{equation*}
P(\bar{X} \geq k) \leq\left(\frac{e^{k-1}}{k^{k}}\right)^{n} \tag{5}
\end{equation*}
$$

Solution: We find the mgf of \bar{X} and then apply Chernoff's bound. The mgf of each X_{i} is

$$
M_{X_{i}}(t)=E\left[e^{t X_{i}}\right]=\sum_{j=0}^{\infty} e^{t j} \frac{1}{j!} e^{-1}=e^{-1} e^{e^{t}}=e^{e^{t}-1}
$$

Then the mgf of \bar{X} is given by

$$
M_{\bar{X}}(t)=E\left[e^{t \bar{X}}\right]=M_{X_{i}}\left(\frac{t}{n}\right)^{n}=e^{n\left(e^{t / n}-1\right)}
$$

Chernoff's bound gives

$$
\begin{equation*}
P(\bar{X}>k) \leq \min _{t>0} \frac{e^{n\left(e^{t / n}-1\right)}}{e^{t k}}=e^{n\left(e^{t / n}-1\right)-t k} \tag{1}
\end{equation*}
$$

Differentiating the exponent with respect to t gives $e^{t / n}-k$. Setting this to 0 and solving for t gives $t=n \ln k$. Plugging this into the RHS of Eq.(1) then gives

$$
P(\bar{X}>k) \leq e^{n(k-1)-\ln k^{k n}}=\frac{e^{n(k-1)}}{k^{k n}}=\left(\frac{e^{k-1}}{k^{k}}\right)^{n}
$$

as desired.

Student Number

2(a). Let X_{1}, X_{2}, \ldots and Y_{1}, Y_{2}, \ldots be two sequences of random variables. Nothing is assumed about these random variables other than that they all have finite mean and variance. Let X and Y also be random variables, both with finite mean and variance.
(a) Give an example where $X_{n} \rightarrow X$ in distribution and $Y_{n} \rightarrow Y$ in distribution as $n \rightarrow \infty$, but $X_{n}+Y_{n}$ does not converge to $X+Y$ in distribution as $n \rightarrow \infty$.
(b) If X is independent of all the X_{i} 's and $\operatorname{Var}(X)>0$, show that X_{n} cannot converge to X in mean square.

Solution:

(a) Let X and Y be independent $N(0,1)$ random variables. Let $X_{n}=X$ and $Y_{n}=-X$ for all n. Then, clearly $X_{n} \rightarrow X$ in distribution. But $-X$ and X have the same distribution since the $N(0,1)$ distribution is symmetric about 0 . So $Y_{n} \rightarrow Y$ in distribution as well. But $X_{n}+Y_{n}$ is equal to 0 for all n and all ω, so clearly $X_{n}+Y_{n} \rightarrow$ 0 in distribution. But the distribution of $X+Y$ is $N(0,2)$ (the distribution of a sum of 2 independent $N(0,1)$ random variables). So $X_{n}+Y_{n}$ does not converge to $X+Y$ in distribution.
(b) Let μ_{n} and μ denote the mean of X_{n} and X, respectively, and let σ_{n}^{2} and σ^{2} denote the variance of X_{n} and X, respectively. If $X_{n} \rightarrow X$ in mean square as $n \rightarrow \infty$ then, by definition, we have $E\left[\left(X_{n}-X\right)^{2}\right] \rightarrow 0$ as $n \rightarrow \infty$. But if X_{n} and X are independent, then

$$
\begin{aligned}
E\left[\left(X_{n}-X\right)^{2}\right] & =E\left[X_{n}^{2}\right]-2 E\left[X_{n} X\right]+E\left[X^{2}\right] \\
& =E\left[X_{n}^{2}\right]-2 E\left[X_{n}\right] E[X]+E\left[X^{2}\right] \\
& =\sigma_{n}^{2}+\mu_{n}^{2}-2 \mu_{n} \mu+\sigma^{2}+\mu^{2} \\
& =\sigma_{n}^{2}+\sigma^{2}+\left(\mu_{n}-\mu\right)^{2} \\
& \geq \sigma^{2}
\end{aligned}
$$

for all n. By assumption $\sigma^{2}>0$ so it is not possible that $E\left[\left(X_{n}-X\right)^{2}\right] \rightarrow 0$ as $n \rightarrow \infty$.
(b) Let Y_{1}, Y_{2}, \ldots be a sequence of discrete random variables such that the joint probability mass function of $\left(Y_{1}, \ldots, Y_{n}\right)$ is

$$
P\left(Y_{1}=y_{1}, \ldots, Y_{n}=y_{n}\right)=\left\{\begin{array}{cl}
{\left[(n+1)\left(\sum_{i=1}^{n} y_{i}\right)\right]^{-1}} & \text { for } y_{i} \in\{0,1\}, i=1, \ldots, n \\
0 & \text { otherwise }
\end{array}\right.
$$

Let X_{n} be the sample mean of Y_{1}, \ldots, Y_{n}, i.e., $X_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$. Show that X_{n} converges in distribution to a limit X and find the distribution of X.

Solution: Let $S_{k, n}=\left\{\left(y_{1}, \ldots, y_{n}\right): y_{i} \in\{0,1\}\right.$ and $\left.\sum_{i=1}^{n} y_{i}=k\right\}$. Then $S_{k, n}$ contains $\binom{n}{k}$ elements, and

$$
\begin{aligned}
P\left(\sum_{i=1}^{n} Y_{i}=k\right) & =P\left(\left(Y_{1}, \ldots, Y_{n}\right) \in S_{k, n}\right) \\
& =\sum_{\left(y_{1}, \ldots, y_{n}\right) \in S_{k, n}}\left[(n+1)\binom{n}{\sum_{i=1}^{n} y_{i}}\right]^{-1} \\
& =\sum_{\left(y_{1}, \ldots, y_{n}\right) \in S_{k, n}}\left[(n+1)\binom{n}{k}\right]^{-1} \\
& =\binom{n}{k}\left[(n+1)\binom{n}{k}\right]^{-1}=\frac{1}{n+1}
\end{aligned}
$$

In other words, $\sum_{i=1}^{n} Y_{i}$ has a discrete uniform distribution on $\{0,1, \ldots, n\}$. Now let $x \in[0,1]$. Then

$$
P\left(X_{n} \leq x\right)=P\left(\sum_{i=1}^{n} Y_{i} \leq n x\right)=\frac{\lfloor n x\rfloor+1}{n+1}=\frac{n x-c(n, x)+1}{n+1} \rightarrow x
$$

as $n \rightarrow \infty$, where $c(n, x)$ is some value satisfying $0 \leq c(n, x)<1$ for all n and all $x \in[0,1]$. Clearly, $P\left(X_{n} \leq x\right)=1$ for all $x>1$ and $P\left(X_{n} \leq x\right)=0$ for all $x<0$. Therefore, the cdf of X_{n} converges to the cdf of a uniform distribution on $(0,1)$, at all x. In other words, $X_{n} \rightarrow X$ in distribution, where $X \sim U(0,1)$.

Student Number

3(a). Let $X_{1}, X_{2} \ldots$ be an infinite sequence of independent and identically distributed random variables, each with finite mean μ and finite variance σ^{2}. Use the strong law of large numbers to show that, with probability 1 , infinitely many of the X_{i} 's must be greater than or equal to μ.

Solution: If $\sigma^{2}=0$ then $X_{i}=\mu$ with probability 1 for all i. If $A_{i}=\left\{\omega \in \Omega: X_{i}(\omega)=\mu\right\}$ then $P\left(A_{i}\right)=1$ for all i. Then $A=\cap_{i=1}^{\infty} A_{i}$ has probability 1 as well. But if $\omega \in A$ then $X_{i}(\omega)=\mu$ for all i. Therefore, infinitely many of the X_{i} (in fact all of them) are greater than or equal to μ (they are equal to μ) with probability 1 . Now suppose $\sigma^{2}>0$. Then for any i, if $P\left(X_{i} \geq \mu\right)=1$ then X_{i} must equal μ with probability 1 (since $E\left[X_{i}\right]=\mu$). But this contradicts $\sigma^{2}>0$. Therefore, $P\left(X_{i} \geq \mu\right)$ must be strictly less than 1 . Similarly, $P\left(X_{i} \leq \mu\right)$ must be strictly less than 1 . Together, these imply $0<P\left(X_{i} \geq \mu\right)<1$. Now define $Y_{i}=I_{[\mu, \infty)}\left(X_{i}\right)$. Then $E\left[Y_{i}\right]=P\left(X_{i} \geq \mu\right)$ and the Y_{i} 's are i.i.d. (and they have finite variance). So by the strong law of large numbers $\bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ converges to $P\left(X_{i} \geq \mu\right)$ with probability 1 . Let B denote the set on which this convergence occurs, so $P(B)=1$. Let $\omega \in B$. Then $\bar{Y}_{n}(\omega)$ converges to $P\left(X_{i} \geq \mu\right)$, which is strictly between 0 and 1. Since each $Y_{i}(\omega)$ is either 0 or 1 the only way this convergence can happen is if infinitely many of the $Y_{i}(\omega)$'s are equal to 0 and infinitely many of them are equal to 1 . But to say that infinitely many of the $Y_{i}(\omega)$'s are equal to 1 is the same as saying that infinitely many of $X_{i}(\omega)$'s are greater than or equal to μ. In other words, if $\omega \in B$, then $X_{i}(\omega) \geq \mu$ for infinitely many i 's. Since $P(B)=1$ we conclude that infinitely many of the X_{i} 's are greater than or equal to μ with probability 1 .
(b) Consider a sequence of independent experiments, where in each experiment we take k balls, labelled 1 to k and randomly place them into k slots, also labelled 1 to k, so that there is exactly one ball in each slot. For the i th experiment, let X_{i} be the number of balls whose label matches the slot label of the slot into which it is placed. So X_{1}, X_{2}, \ldots is a sequence of independent and identically distributed random variables. Use the central limit theorem to approximate the probability that in the first 25 experiments the total number of balls whose label matches their slot label is greater than 30 .

Solution: We first find the mean and variance of X_{i}. Writing $X_{i}=X_{i 1}+\ldots+X_{i k}$, where $X_{i j}$ is the indicator that slot j receives ball j in the i th experiment, we have that

$$
E\left[X_{i}\right]=\sum_{j=1}^{k} E\left[X_{i j}\right]=\sum_{j=1}^{k} P\left(X_{i j}=1\right)
$$

where $P\left(X_{i j}=1\right)$ is the probability that slot j receives ball j. Since all assignments of the balls to the slots are equally likely, a simple counting argument gives that

$$
P\left(X_{i j}=1\right)=\frac{(k-1)!}{k!}=\frac{1}{k}
$$

Therefore, $E\left[X_{i}\right]=\sum_{j=1}^{k} \frac{1}{k}=1$. Similarly,

$$
\begin{equation*}
E\left[X_{i}^{2}\right]=E\left[\left(X_{i 1}+\ldots+X_{i k}\right)^{2}\right]=\sum_{j=1}^{k} E\left[X_{i j}^{2}\right]+\sum_{j \neq r} E\left[X_{i j} X_{i r}\right]=1+\sum_{j \neq r} E\left[X_{i j} X_{i r}\right] \tag{2}
\end{equation*}
$$

Another counting argument yields

$$
\begin{aligned}
E\left[X_{i j} X_{i r}\right] & =P\left(X_{i j}=1, X_{i r}=1\right)=P(\text { ball } j \text { goes in slot } j \text { and ball } r \text { goes in slot } r) \\
& =\frac{(k-2)!}{k!}=\frac{1}{k(k-1)}
\end{aligned}
$$

Since there are $k(k-1)$ terms in the final sum in Eq.(2), we have $E\left[X_{i}^{2}\right]=2$, and so

$$
\operatorname{Var}\left(X_{i}\right)=E\left[X_{i}^{2}\right]-E\left[X_{i}\right]^{2}=2-1^{2}=2-1=1
$$

The total number of balls in the first 25 experiments whose label matches their slot label is $\sum_{i=1}^{25} X_{i}$, where $X_{1} \ldots, X_{25}$ are iid with $E\left[X_{i}\right]=1$ and $\operatorname{Var}\left(X_{i}\right)=1$. By the CLT

$$
P\left(\sum_{i=1}^{25} X_{i}>30\right)=P\left(\frac{\sum_{i=1}^{25} X_{i}-25}{5}>\frac{30-25}{5}\right) \approx P(Z>1)=1-\Phi(1)=0.1587
$$

where $Z \sim N(0,1)$.

