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1. Let X and Y be independent random variables, where X has a Poisson distribution with

parameter 1 and Y has an exponential distribution with parameter 1. Show that

E

[(
Y

2

)X
]

=
2

e
.

Hint: You can condition on X and compute E[Y n] for any nonnegative integer n. [10]

Solution: Conditioning on X = n, we have

E

[(
Y

2

)X ∣∣∣∣ X = n

]
= E

[(
Y

2

)n ∣∣∣∣ X = n

]
= E

[(
Y

2

)n]
=

1

2n
E[Y n],

since X and Y are independent. Computing E[Y n], we have

E[Y n] =

∫ ∞

0

yne−ydy = n!

∫ ∞

0

1

n!
yne−ydy = n!

where the last equality follows because the integrand is the pdf of a gamma distribution

with parameters n + 1 and 1. Therefore, by the law of total expectation

E

[(
Y

2

)X
]

=
∞∑

n=0

n!

2n
P (X = n) =

∞∑
n=0

n!

2n

1

n!
e−1 = e−1

∞∑
n=0

1

2n
=

2

e
,

as desired.
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2. (a) Let X and Y be independent random variables each having the uniform distribution

on (0, 1). Let U = min(X, Y ) and V = max(X, Y ). Compute Cov(U, V ). Hint: Note

that UV = XY with probability 1. [6]

Solution: First, from the hint

E[UV ] = E[XY ] = E[X]E[Y ] =

(
1

2

)(
1

2

)
=

1

4
,

where the second equality follows since X and Y are independent. From the formula sheet

the pdf of U = min(X, Y ) is

fU(u) =

{
2(1− u) for 0 < u < 1

0 otherwise

and the pdf of V = max(X, Y ) is

fV (v) =

{
2v for 0 < v < 1

0 otherwise.

Therefore,

E[U ] =

∫ 1

0

2u(1− u)du = 2

[
u2

2
− u3

3

]1

0

=
2

6
=

1

3

and

E[V ] =

∫ 1

0

2v2dv = 2
v3

3

∣∣∣∣1
0

=
2

3
.

Thus, we get

Cov(U, V ) = E[UV ]− E[U ]E[V ] =
1

4
−
(

1

3

)(
2

3

)
=

1

4
− 2

9
=

1

36
.
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(b) Let X1, . . . , Xn be independent and identically distributed random variables with

finite variance, and let Xn = 1
n

∑n
i=1 Xi. Show that Cov(Xn, Xi − Xn) = 0 for all

i = 1, . . . , n. [4]

Solution: Using properties of covariance, we have (for i fixed)

Cov(Xn, Xi −Xn) = Cov

(
1

n

n∑
j=1

Xj,
1

n

n∑
k=1

(Xi −Xk)

)

=
1

n2

n∑
j=1

n∑
k=1

Cov(Xj, Xi −Xk)

=
1

n2

n∑
j=1

n∑
k=1

Cov(Xj, Xi)−
1

n2

n∑
j=1

n∑
k=1

Cov(Xj, Xk)

=
1

n
Cov(Xi, Xi)−

1

n2

n∑
j=1

Cov(Xj, Xj)

=
σ2

n
− σ2

n
= 0,

where σ2 = Var(Xi), many of the terms in going from the third line above to the fourth line

are equal to zero because X1, . . . , Xn are independent, and Cov(Xj, Xj) = Var(Xj) = σ2.
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3. Let Y be a continuous random variable with probability density function fY (y) and

moment generating function MY (t) (assume |MY (t)| < ∞ for all t). For a fixed τ , let X

have probability density function

fX(x) =
eτxfY (x)

MY (τ)
.

(a) Find MX(t), the moment generating function of X. [4]

Solution: The moment generating function of X is

MX(t) = E[etX ] =

∫ ∞

−∞
etxfX(x)dx =

1

MY (τ)

∫ ∞

−∞
e(t+τ)xfY (x)dx =

MY (t + τ)

MY (τ)
.

(b) Suppose that Y ∼ N(µ, σ2). Find E[X]. [6]

Solution: If Y ∼ N(µ, σ2), then the moment generating function of Y is

MY (t) = etµ+σ2t2/2

and so the moment generating function of X (from part (a)) is

MX(t) =
MY (t + τ)

MY (τ)
=

e(t+τ)µ+σ2(t+τ)2/2

eτµ+σ2τ2/2
= etµ+σ2t2/2+σ2tτ .

The mean of X can then be computed as

E[X] = M ′
X(0) =

[
(µ + σ2t + σ2τ)etµ+σ2t2/2+σ2tτ

]
t=0

= µ + σ2τ.
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4. Consider a sequence of independent experiments, where in each experiment we take k

balls, labelled 1 to k and randomly place them into k slots, also labelled 1 to k, so that

there is exactly one ball in each slot. For the ith experiment, let Xi be the number of

balls whose label matches the slot label of the slot into which it is placed. So X1, X2, . . .

is a sequence of independent and identically distributed random variables.

(a) Find the mean and variance of Xi. Hint: Write Xi as Xi = Xi1 + . . . + Xik, where

Xij is the indicator that slot j receives ball j in the ith experiment. [6]

Solution: Writing Xi = Xi1 + . . . + Xik as suggested in the hint, we have that

E[Xi] =
k∑

j=1

E[Xij] =
k∑

j=1

P (Xij = 1),

where P (Xij = 1) is the probability that the slot with label j receives the ball with label

j. Since all assignments of the balls to the slots are equally likely, a simple counting

argument gives that

P (Xij = 1) =
(k − 1)!

k!
=

1

k
.

Therefore, E[Xi] =
∑k

j=1
1
k

= 1. Similarly,

E[X2
i ] = E[(Xi1 + . . . + Xik)

2] =
k∑

j=1

E[X2
ij] +

∑
j 6=r

E[XijXir] = 1 +
∑
j 6=r

E[XijXir], (1)

where the last equality follows since X2
ij = Xij (for indicator random variables). Another

counting argument yields

E[XijXir] = P (Xij = 1, Xir = 1)

= P (ball j goes in slot j and ball r goes in slot r)

=
(k − 2)!

k!
=

1

k(k − 1)
.

Since there are k(k − 1) terms in the final sum in Eq.(1), we have E[X2
i ] = 2, and so

Var(Xi) = E[X2
i ]− E[Xi]

2 = 2− 12 = 2− 1 = 1.
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(b) Use the central limit theorem to approximate the probability that in the first 25

experiments the total number of balls whose label matches their slot label is greater than

30. [4]

Solution: The total number of balls in the first 25 experiments whose label matches their

slot label is
∑25

i=1 Xi, where X1 . . . , X25 are independent and identically distributed ran-

dom variables and where (from part(a)) we have that E[Xi] = 1 and Var(Xi) = 1. By

the central limit theorem

P

(
25∑
i=1

Xi > 30

)
= P

(∑25
i=1 Xi − 25

5
>

30− 25

5

)
≈ P (Z > 1),

where Z ∼ N(0, 1). That is,

P

(
25∑
i=1

Xi > 30

)
≈ 1− Φ(1) = 1− 0.8413 = 0.1587.
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5. Let Y1, Y2, . . . be a sequence of discrete random variables such that the joint probability

mass function of (Y1, . . . , Yn) is

P (Y1 = y1, . . . , Yn = yn) =


[
(n + 1)

(
nPn

i=1 yi

)]−1

for yi ∈ {0, 1}, i = 1, . . . , n

0 otherwise

(so the Yi’s are Bernoulli random variables but they are not independent). Let Xn be the

sample mean of Y1, . . . , Yn, i.e., Xn = 1
n

∑n
i=1 Yi. Show that Xn converges in distribution

to a limit X and find the distribution of X. Hint: X is not a constant. Hint: First find

the distribution of
∑n

i=1 Yi, which has sample space {0, 1, . . . , n}. [10]

Solution: Let Sk,n = {(y1, . . . , yn) : yi ∈ {0, 1} and
∑n

i=1 yi = k}. Then
∑n

i=1 Yi is con-

stant on Sk,n (equal to k), Sk,n contains
(

n
k

)
elements, and

P (
n∑

i=1

Yi = k) = P ((Y1, . . . , Yn) ∈ Sk,n)

=
∑

(y1,...,yn)∈Sk,n

[
(n + 1)

(
n∑n

i=1 yi

)]−1

=
∑

(y1,...,yn)∈Sk,n

[
(n + 1)

(
n

k

)]−1

=

(
n

k

)[
(n + 1)

(
n

k

)]−1

=
1

n + 1
.

In other words,
∑n

i=1 Yi has a discrete uniform distribution on {0, 1, . . . , n}. Now let

x ∈ [0, 1]. Then

P (Xn ≤ x) = P
( n∑

i=1

Yi ≤ nx
)

=
bnxc+ 1

n + 1
=

nx− c(n, x) + 1

n + 1
→ x

as n →∞, where c(n, x) is some value satisfying 0 ≤ c(n, x) < 1 for all n and all x ∈ [0, 1].

Clearly, P (Xn ≤ x) = 1 for all x > 1 and P (Xn ≤ x) = 0 for all x < 0. Therefore, the cdf

of Xn converges to the cdf of a uniform distribution on (0, 1), at all x. In other words,

Xn → X in distribution, where X ∼ U(0, 1).
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Formula Sheet

Special Distributions

Continuous uniform on (a, b):

f(x) =

1/(b− a) if a ≤ x ≤ b

0 otherwise,
E[X] =

a + b

2
, Var[X] =

(b− a)2

12
.

Exponential with parameter λ:

f(x) =

λe−λx if x > 0

0 otherwise.
E[X] =

1

λ
, Var[X] =

1

λ2
.

Gamma with parameters r and λ:

f(x) =

 λr

Γ(r)
xα−1e−λx if x > 0

0 otherwise.
E[X] =

r

λ
, Var[X] =

r

λ2
.

Normal (Gaussian) with mean µ and variance σ2:

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 and F (x) =
1

σ
√

2π

∫ x

−∞
e−

(t−µ)2

2σ2 dt.

Poisson with parameter λ:

P (X = k) =

λk

k!
e−λ k = 0, 1, . . .

0 otherwise.
E[X] = λ, Var[X] = λ.

• df and pdf of the kth order statistic from a random sample X1, . . . , Xn:

Fk(x) =
n∑

i=k

(
n

i

)
[F (x)]i[1− F (x)]n−i;

fk(x) =
n!

(k − 1)!(n− k)!
f(x)[F (x)]k−1[1− F (x)]n−k,

where F (x) and f(x) are the df and pdf, respectively, of each Xi.
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The distribution function of a standard normal random variable


