Queen’s University
Department of Mathematics and Statistics

MTHE/STAT 353
Homework 1 Solutions, 2020

• For each question, your solution should start on a fresh page. You can write your solution using one of the following three formats:

 (1) Start your solution in the space provided right after the problem statement, and use your own paper if you need extra pages.

 (2) Write your whole solution using your own paper, and make sure to number your solution.

 (3) Write your solution using document creation software (e.g., Word or LaTeX).

• Write your name and student number on the first page of each solution.

• For each question, photograph or scan each page of your solution (unless your solution has been typed up and is already in electronic format), and combine the separate pages into a single file. Then upload each file (one for each question), into the appropriate box in Crowdmark.

Total Marks: 26
1. Let X_1, X_2, X_3 be discrete random variables with joint pmf

$$p_X(x_1, x_2, x_3) = \left(\frac{1}{2}\right)^{x_3} (1 - e^{-x_3})^2 e^{-x_3(x_1 + x_2 - 2)},$$

for $x_1, x_2, x_3 = 1, 2, 3, \ldots$ and $p_X(x_1, x_2, x_3) = 0$ otherwise. Find the marginal pmf of X_1

Solution: (5 marks) Let $x_1 \in \mathbb{N}$ be fixed. Sum over x_2 first:

$$\sum_{x_2=1}^{\infty} p_X(x_1, x_2, x_3) = \left(\frac{1}{2}\right)^{x_3} (1 - e^{-x_3})e^{-x_3(x_1 - 1)} \sum_{x_2=1}^{\infty} (1 - e^{-x_3})^{x_2 - 1}$$

$$= \left(\frac{1}{2}\right)^{x_3} (1 - e^{-x_3})e^{-x_3(x_1 - 1)},$$

since the sum, being the sum over all probabilities of a Geometric$(1 - e^{-x_3})$ distribution, is equal to one. Next, sum over x_3:

$$\sum_{x_3=1}^{\infty} \sum_{x_2=1}^{\infty} p_X(x_1, x_2, x_3) = \sum_{x_3=1}^{\infty} \left(\frac{1}{2}\right)^{x_3} (1 - e^{-x_3})e^{-x_3(x_1 - 1)}$$

$$= \sum_{x_3=1}^{\infty} \left(\frac{e^{-(x_1 - 1)}}{2}\right)^{x_3} - \sum_{x_3=1}^{\infty} \left(\frac{e^{-x_1}}{2}\right)^{x_3}$$

$$= \frac{1}{1 - e^{-(x_1 - 1)}} - 1 - \left(\frac{1}{1 - e^{-x_1}} - 1\right)$$

$$= \frac{2}{2 - e^{-(x_1 - 1)}} - \frac{2}{2 - e^{-x_1}}.$$

So the marginal pmf of X_1 is

$$p_{X_1}(x_1) = \left\{ \begin{array}{ll}
\frac{2}{2 - e^{-(x_1 - 1)}} - \frac{2}{2 - e^{-x_1}} & \text{for } x_1 = 1, 2, 3, \ldots \\
0 & \text{otherwise.}
\end{array} \right.$$
2. Let \(X_1, X_2, X_3 \) be continuous random variables with joint pdf

\[
f_X(x_1, x_2, x_3) = \frac{1}{\sqrt{2\pi}} e^{-(x_1-x_3)^2/2} \frac{1}{\sqrt{2\pi}} e^{-(x_2-x_3)^2/2} \frac{1}{\sqrt{2\pi}} e^{-x_3^2/2},
\]

for \(-\infty < x_1, x_2, x_3 < \infty\). Find the joint marginal pdf of \((X_1, X_2)\) and the marginal pdf of \(X_1\).

Solution: (6 marks) To get the joint marginal pdf of \((X_1, X_3)\) we need to integrate out \(x_2\). Combining the exponents above we get a quadratic function of \(x_3\), which we will write as \(-\frac{1}{2a}(x_3 - b)^2\), where \(a\) and \(b\) do not depend on \(x_3\):

\[
-\frac{(x_1 - x_3)^2}{2} - \frac{(x_2 - x_3)^2}{2} - \frac{x_3^2}{2} = -\frac{1}{2}(x_1^2 - 2x_1x_3 + x_3^2 + x_2^2 - 2x_2x_3 + x_3^2 + x_3^2) = -\frac{1}{2}(3x_3^2 - 2x_3(x_1 + x_2) + x_1^2 + x_2^2) = -\frac{3}{2} \left(x_3^2 - 2x_3 \frac{x_1 + x_2}{3} + \frac{x_1^2 + x_2^2}{3} \right) = -\frac{3}{2} \left(x_3 - \frac{x_1 + x_2}{3} \right)^2 - \frac{3}{2} \left(\frac{x_1^2 + x_2^2}{3} - \frac{(x_1 + x_2)^2}{9} \right) = -\frac{1}{2a} (x_3 - b)^2 - \frac{3}{2} \left(\frac{x_1^2 + x_2^2}{3} - \frac{(x_1 + x_2)^2}{9} \right),
\]

where \(a = 1/3\) and \(b = \frac{x_1 + x_2}{3}\). This shows that for fixed \(x_1\) and \(x_2\), the joint pdf \(f_X(x_1, x_2, x_3)\) as a function of \(x_3\) is a constant, say \(c\), times a \(N(b, a)\) density for \(x_3\). Integrating over all \(x_3\) leaves just the constant \(c\), which depends on \(x_1\) and \(x_2\). Then \(c\) considered as a function of \(x_1\) and \(x_2\) is the joint marginal pdf of \((X_1, X_2)\), which is

\[
f_{X_1, X_2}(x_1, x_2) = \frac{\sqrt{a}}{2\pi} \exp \left\{ -\frac{3}{2} \left(\frac{x_1^2 + x_2^2}{3} - \frac{(x_1 + x_2)^2}{9} \right) \right\} = \frac{1}{2\pi\sqrt{3}} \exp \left\{ -\frac{1}{6} \left(3x_1^2 + 3x_2^2 - x_1^2 - 2x_1x_2 - x_2^2 \right) \right\} = \frac{1}{2\pi\sqrt{3}} \exp \left\{ -\frac{1}{3} \left(x_1^2 - x_1x_2 + x_2^2 \right) \right\},
\]

which is valid for \(-\infty < x_1, x_2 < \infty\). For the marginal pdf of \(X_1\) we integrate \(f_{X_1, X_2}(x_1, x_2)\) over all \(x_2\). We write the exponent as

\[
-\frac{1}{3} (x_1^2 - x_1x_2 + x_2^2) = -\frac{1}{3} \left(x_2^2 - 2\frac{x_1x_2}{2} + x_1^2 \right) = -\frac{1}{3} \left(\left(x_2 - \frac{x_1}{2} \right)^2 + x_1^2 - \frac{x_1^2}{4} \right)
\]

So, for fixed \(x_1\), \(f_{X_1, X_2}(x_1, x_2)\) is a constant times a \(N\left(\frac{x_1}{2}, \frac{3}{2}\right)\) density for \(x_2\). Integrating out \(x_2\) leaves the constant, which as a function of \(x_1\) gives the marginal pdf of \(X_1\):

\[
f_{X_1}(x_1) = \frac{1}{\sqrt{2\pi\sqrt{3}}} \sqrt{\frac{3}{2}} \exp \left\{ -\frac{1}{3} \left(x_1^2 - \frac{x_1^2}{4} \right) \right\} = \frac{1}{\sqrt{2\pi\sqrt{2}}} \exp \left\{ -\frac{1}{2(2)} x_1^2 \right\},
\]

i.e., \(X_1\) has a \(N(0, 2)\) distribution.
3. An urn contains 2 balls numbered '1', 2 balls numbered '2', and 10 balls numbered '3'. Seven balls are drawn at random from the urn, without replacement. Let X_i be the number of balls in the sample that are numbered 'i', for $i = 1, 2, 3$. Find $E[X_3]$.

Solution: (4 marks) We first get the marginal pmf of X_3. The possible values of X_3 are 3, 4, 5, 6 and 7. Relabel the balls numbered '1' and '2' as '0', so the urn contains 4 balls labelled '0' and 10 balls labelled '3'. Let X_0 denote the number of balls in the sample that are labelled '0'. For $x_3 \in \{3, 4, 5, 6, 7\}$,

$$P(X_3 = x_3) = P(X_3 = x_3, X_0 = 7 - x_3) = \binom{10}{x_3} \binom{4}{7 - x_3} \binom{14}{7}.$$

Then

$$E[X_3] = \sum_{x_3=3}^{7} x_3 \frac{\binom{10}{x_3} \binom{4}{7-x_3}}{\binom{14}{7}}.$$

$$= \frac{1}{\binom{14}{7}} \left[3\binom{10}{3} \binom{4}{4} + 4\binom{10}{4} \binom{4}{3} + 5\binom{10}{5} \binom{4}{2} + 6\binom{10}{6} \binom{4}{1} + 7\binom{10}{7} \binom{4}{0} \right]$$

$$= \frac{1}{3432} \left(3(120)(1) + 4(210)(4) + 5(252)(6) + 6(210)(4) + 7(120)(1) \right)$$

$$= \frac{17160}{3432} = 5.$$
4. Let X_1, X_2, X_3 be independent, discrete random variables, where X_1 and X_2 are both distributed as Poisson(θ) and X_3 has a Geometric(1/2) distribution (on the positive integers, so X_3 has pmf $f_3(x_3) = (1/2)^x_3$ for $x_3 = 1, 2, \ldots$ and $f_3(x_3) = 0$ otherwise). Find the probability that the random matrix
\[
\begin{bmatrix}
X_1 & 0 & 0 \\
0 & X_2 & X_2 \\
0 & X_3 & X_2
\end{bmatrix}
\]
is singular.

Solution: (5 marks) Let A be the event that the matrix is singular (which is the same as the event that the determinant of the matrix is 0). Then $P(A) = P(A_1 \cup A_2 \cup A_3)$, where $A_1 = \{X_1 = 0\}$, $A_2 = \{X_2 = 0\}$, and $A_3 = \{X_2 = X_3 \neq 0\}$. The event A_3 is disjoint from A_2, and so
\[
P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3).
\]
From the given distributions for X_1, X_2, and X_3 and by their mutual independence, we have
\[
P(A_1) = e^{-\theta}
\]
\[
P(A_2) = e^{-\theta}
\]
\[
P(A_1 \cap A_2) = P(A_1)P(A_2) = e^{-2\theta}
\]
\[
P(A_3) = \sum_{k=1}^{\infty} P(X_2 = k, X_3 = k) = \sum_{k=1}^{\infty} \frac{\theta^k}{k!} e^{-\theta} \left(\frac{1}{2}\right)^k = e^{-\theta}(e^{\theta/2} - 1) = e^{-\theta/2} - e^{-\theta}
\]
\[
P(A_1 \cap A_3) = P(A_1)P(A_3) = e^{-3\theta/2} - e^{-2\theta}
\]
So we get
\[
P(A) = e^{-\theta} + e^{-\theta} - e^{-2\theta} + e^{-\theta/2} - e^{-\theta} - (e^{-3\theta/2} - e^{-2\theta})
\]
\[
= e^{-\theta} + e^{-\theta/2} - e^{-3\theta/2}.
\]
5. Suppose X_1, \ldots, X_n are independent random variables, and $X_k \sim \text{Exponential}(k)$, i.e., X_k has pdf

$$f_k(x_k) = \begin{cases} ke^{-kx_k} & \text{for } x_k \geq 0 \\ 0 & \text{for } x_k < 0 \end{cases},$$

for $k = 1, \ldots, n$. Find $P(\min(X_1, \ldots, X_n) = X_n)$ and $P(X_n < X_{n-1} < \ldots < X_2 < X_1)$.

Solution: (6 marks) Let A denote the event “$\min(X_1, \ldots, X_n) = X_n$”. Then $A = \{X_n < X_1, \ldots, X_n < X_{n-1}\}$. The n-dimensional integral giving $P(A)$ is

$$P(A) = \int_0^\infty \int_0^{\infty} \ldots \int_0^{\infty} (e^{-x_1})(2e^{-2x_2}) \ldots (ne^{-nx_n}) dx_1 \ldots d_{x_{n-1}} dx_n$$

$$= \int_0^\infty \int_0^{\infty} \ldots \int_0^{\infty} (2e^{-2x_2}) \ldots (ne^{-nx_n}) e^{-x_2} dx_2 \ldots d_{x_{n-1}} dx_n$$

$$= \int_0^\infty \int_0^{\infty} \ldots \int_0^{\infty} (3e^{-3x_3}) \ldots (ne^{-nx_n}) e^{-x_3} e^{-2x_2} dx_3 \ldots d_{x_{n-1}} dx_n$$

$$\vdots$$

$$= \int_0^\infty ne^{-nx_n} e^{-x_n} e^{-2x_n} \ldots e^{-(n-1)x_n} dx_n$$

$$= n \int_0^\infty e^{-(n(n+1)/2)x_n} dx_n = \frac{2n}{n(n+1)} = \frac{2}{n+1}.$$

Let B denote the event $\{X_n < X_{n-1} < \ldots < X_1\}$. Then

$$P(B) = \int_0^\infty \int_0^{\infty} \ldots \int_0^{\infty} (e^{-x_1})(2e^{-2x_2}) \ldots (ne^{-nx_n}) dx_1 \ldots d_{x_{n-1}} dx_n$$

$$= n! \int_0^\infty \int_0^{\infty} \ldots \int_0^{\infty} (e^{-x_2})(e^{-2x_3}) \ldots (e^{-nx_n}) dx_2 \ldots d_{x_{n-1}} dx_n$$

$$= n! \frac{2}{3} \int_0^\infty \int_0^{\infty} \ldots \int_0^{\infty} (e^{-3x_3})(e^{-3x_4}) \ldots (e^{-nx_n}) dx_3 \ldots d_{x_{n-1}} dx_n$$

$$\vdots$$

$$= \frac{n!}{(3)(6)(10) \ldots (1 + 2 + \ldots + n - 1)} \int_0^\infty e^{-(1+2+\ldots+n-1)x_n} e^{-nx_n} dx_n$$

$$= \frac{n!}{(3)(6)(10) \ldots (1 + 2 + \ldots + n - 1) n(n+1)}.$$

Now,

$$(3)(6)(10) \ldots (1 + 2 + \ldots n - 1) = \prod_{k=2}^{n-1} \frac{k(k + 1)}{2} = \frac{(n - 1)!n!}{2^{n-1}},$$

so we get

$$P(B) = \frac{2^n}{(n+1)!}.$$