Queen's University Department of Mathematics and Statistics

MTHE/STAT 353 Homework 5 Due March 14, 2022

- For each question, your solution should start on a fresh page. You can write your solution using one of the following three formats:
 - (1) Use your own paper.
 - (2) Use a tablet, such as an ipad.
 - (3) Use document creation software, such as Word or LaTeX.
- Write your name and student number on the first page of each solution, and number your solution.
- For each question, photograph or scan each page of your solution (unless your solution has been typed up and is already in electronic format), and combine the separate pages into a single file. Then upload each file (one for each question), into the appropriate box in Crowdmark.

Instructions for submitting your solutions to Crowdmark are also here.

Total Marks : 27

Name

1. (4 marks) Let X be a continuous random variable with pdf

$$f_X(x) = \begin{cases} \frac{c(10-x)^4}{\sqrt{x-1}} & \text{for } 1 < x < 10\\ 0 & \text{otherwise,} \end{cases}$$

where c is a normalizing constant. Find c and E[X]. *Hint:* Write X = 1 + 9Y, where Y has a Beta distribution.

Name

- **2.** (8 marks)
 - (a) (3 marks) For $\alpha, \beta > 0$, show that

$$B(\alpha, \beta) = 2 \int_0^\infty t^{2\alpha - 1} (1 + t^2)^{-(\alpha + \beta)} dt.$$

Hint: Make the substitution $x = t^2/(1 + t^2)$ in

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx.$$

(b) (5 marks) Refer back to Problem 2 on Homework 4. For the t distribution with n degrees of freedom, the mean does not exist for n = 1 and the variance does not exist for $n \le 2$. For $n \ge 2$ the mean is 0. For $n \ge 3$, use part(a) to find the variance of the t distribution with n degrees of freedom.

Name

- **3.** (5 marks) A fair die is rolled ten times.
 - (a) (2 marks) What is the probability that the number of 1's plus the number of 2's equals three and the number of 3's equals four?
 - (b) (3 marks) Given that exactly four of the ten rolls resulted in an outcome less than 4, what is the probability that three 5's were rolled. (Recall that for 2 events A and B with P(B) > 0, the conditional probability of A given B is $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$).

Name

4. (5 marks) Let X_1, \ldots, X_r be independent Poisson random variables, with X_i distributed as $Poisson(\lambda_i), i = 1, \ldots, r$. Let n be a fixed positive integer. Compute

$$P(X_1 = x_1, \dots, X_r = x_r \mid \sum_{i=1}^r X_i = n)$$

for all $(x_1, \ldots, x_r)^T \in \mathbb{R}^r$. You may use the fact that $\sum_{i=1}^r X_i$ has a Poisson $(\lambda_1 + \ldots + \lambda_r)$ distribution.

Name

5. (5 marks) Let (X_1, \ldots, X_k) have a multinomial distribution with parameters n and p_1, \ldots, p_k . For $i, j = 1, \ldots, k$, find $E[X_i X_j]$. *Hint:* Write $X_i = X_{i1} + \ldots + X_{in}$ where

 $X_{ik} = \begin{cases} 1 & \text{if the } k \text{th multinomial experiment has outcome } i \\ 0 & \text{otherwise,} \end{cases}$

and similarly write $X_j = X_{j1} + \ldots + X_{jn}$.