Queen's University Department of Mathematics and Statistics

MTHE/STAT 353 Homework 5 Solutions, 2022

- For each question, your solution should start on a fresh page. You can write your solution using one of the following three formats:
 - (1) Use your own paper.
 - (2) Use a tablet, such as an ipad.
 - (3) Use document creation software, such as Word or LaTeX.
- Write your name and student number on the first page of each solution, and number your solution.
- For each question, photograph or scan each page of your solution (unless your solution has been typed up and is already in electronic format), and combine the separate pages into a single file. Then upload each file (one for each question), into the appropriate box in Crowdmark.

Instructions for submitting your solutions to Crowdmark are also here.

Total Marks : 27

Name

1. (4 marks) Let X be a continuous random variable with pdf

$$f_X(x) = \begin{cases} \frac{c(10-x)^4}{\sqrt{x-1}} & \text{for } 1 < x < 10\\ 0 & \text{otherwise,} \end{cases}$$

where c is a normalizing constant. Find c and E[X].

Solution: From the lecture notes on the Beta distribution we can deduce that X is equal in distribution to 1 + 9Y, where Y has a Beta distribution with parameters $\frac{1}{2}$ and 5. The normalizing constant of this Beta distribution is

$$\frac{\Gamma(1/2+5)}{\Gamma(1/2)\Gamma(5)} = \frac{52.34278}{(\sqrt{\pi})(4!)} = 1.230469.$$

where $\Gamma(5.5) = (4.5)(3.5)(2.5)(1.5)(.5)\Gamma(.5) = 29.53125\sqrt{\pi} = 52.34278$, using the recursive property of the Gamma function (or see Problem 3 of Homework 4). The normalizing constant of the distribution of X is then

$$c = \frac{1.230469}{9^{4.5}} = \frac{1.230469}{19683} = .0000625143.$$

(There was a typo in the lecture notes for the 2nd lecture of Week 7 where I forgot to put the factor $\frac{1}{b-a}$ in the pdf of Y. It is fixed now. If you use the pdf for Y that had the typo then you get the normalizing constant to be

$$c = \frac{1.230469}{9^{3.5}} = \frac{1.230469}{2187} = .00056263.$$

Either answer for c is acceptable for full marks). Using the relationship X = 1 + 9Y we have

$$E[X] = 1 + 9E[Y] = 1 + 9\frac{1/2}{1/2 + 5} = 1 + \frac{9}{11} = \frac{20}{11} = 1.818.$$

Name

- **2.** (8 marks)
 - (a) (3 marks) For $\alpha, \beta > 0$, show that

$$B(\alpha, \beta) = 2 \int_0^\infty t^{2\alpha - 1} (1 + t^2)^{-(\alpha + \beta)} dt.$$

Hint: Make the substitution $x = t^2/(1+t^2)$ in

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx.$$

(b) (5 marks) Refer back to Problem 2 on Homework 4. For the t distribution with n degrees of freedom, the mean does not exist for n = 1 and the variance does not exist for $n \leq 2$. For $n \geq 2$ the mean is 0. For $n \geq 3$, use part(a) to find the variance of the t distribution with n degrees of freedom.

Solution:

(a) We have $B(\alpha, \beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$. Making the substitution $x = t^2/(1+t^2)$,

$$dx = \frac{(1+t^2)2t - t^2(2t)}{(1+t^2)^2} dt = \frac{2t}{(1+t^2)^2} dt,$$

and $t = \sqrt{x/(1-x)}$, so that as x varies between 0 and 1, the limits of t are from 0 to ∞ . Thus, we obtain

$$B(\alpha,\beta) = \int_0^\infty \left(\frac{t^2}{1+t^2}\right)^{\alpha-1} \left(\frac{1}{1+t^2}\right)^{\beta-1} \frac{2t}{(1+t^2)^2} dt = 2\int_0^\infty t^{2\alpha-1} (1+t^2)^{-(\alpha+\beta)} dt.$$

(b) Let $n \geq 3$ and let $U \sim t_n$. Then

$$\operatorname{Var}(U) = E[U^2] = \int_{-\infty}^{\infty} u^2 \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{u^2}{n}\right)^{-(n+1)/2} du$$
$$= \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} 2 \int_0^{\infty} u^2 \left(1 + \frac{u^2}{n}\right)^{-(n+1)/2} du$$

Making the substitution $t = u/\sqrt{n}$, we have $u = \sqrt{n}t$, $du = \sqrt{n}dt$, and the limits for t remain from 0 to ∞ . Then we have

$$\operatorname{Var}(U) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} 2 \int_0^\infty nt^2 \left(1 + \frac{nt^2}{n}\right)^{-(n+1)/2} \sqrt{n} dt$$
$$= \frac{n\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{n}{2}\right)} 2 \int_0^\infty t^2 (1+t^2)^{-(n+1)/2} dt$$

Setting $2\alpha - 1 = 2$ and $\alpha + \beta = (n+1)/2$ in part(a), we get $\alpha = 3/2$ and $\beta = (n-2)/2$, which is positive for $n \ge 3$. With these values of α and β and using part(a), we have

$$\operatorname{Var}(U) = \frac{n\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{n}{2}\right)} B\left(\frac{3}{2}, \frac{n-2}{2}\right)$$
$$= \frac{n\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{n}{2}\right)} \frac{\Gamma\left(\frac{3}{2}\right)\Gamma\left(\frac{n-2}{2}\right)}{\Gamma\left(\frac{3}{2}+\frac{n-2}{2}\right)}$$
$$= \frac{n\Gamma\left(\frac{3}{2}\right)\Gamma\left(\frac{n-2}{2}\right)}{\sqrt{\pi}\frac{n-2}{2}\Gamma\left(\frac{n-2}{2}\right)}$$
$$= \frac{n\frac{1}{2}\Gamma\left(\frac{1}{2}\right)}{\sqrt{\pi}\frac{n-2}{2}} = \frac{n}{n-2},$$

since $\Gamma(1/2) = \sqrt{\pi}$.

Name

- **3.** (5 marks) A fair die is rolled ten times.
 - (a) (2 marks) What is the probability that the number of 1's plus the number of 2's equals three and the number of 3's equals four?
 - (b) (3 marks) Given that exactly four of the ten rolls resulted in an outcome less than 4, what is the probability that three 5's were rolled. (Recall that for 2 events A and B with P(B) > 0, the conditional probability of A given B is $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$).

Solution:

(a) Let X_{12} be the number of 1's or 2's, X_3 the number of 3's, and X_{456} the number of 4's, 5's or 6's. Then the vector (X_{12}, X_3, X_{456}) has a Multinomial distribution with parameters 10 and $p_{12} = 1/3$, $p_3 = 1/6$, $p_{456} = 1/2$. The desired probability is

$$P(X_{12} = 3, X_3 = 4) = P(X_{12} = 3, X_3 = 4, X_{456} = 3)$$

= $\frac{10!}{3! 4! 3!} \left(\frac{1}{3}\right)^3 \left(\frac{1}{6}\right)^4 \left(\frac{1}{2}\right)^3 \approx 0.015.$

(b) Let X₁₂₃ be the number of 1's, 2's, or 3's, X₄₆ the number of 4's or 6's, and X₅ the number of 5's. Then (X₁₂₃, X₄₆, X₅) has a Multinomial distribution with parameters 10 and p₁₂₃ = 1/2, p₄₆ = 1/3, p₅ = 1/6. The desired conditional probability is

$$P(X_5 = 3 \mid X_{123} = 4) = \frac{P(X_5 = 3, X_{123} = 4)}{P(X_{123} = 4)}$$

$$= \frac{P(X_5 = 3, X_{123} = 4, X_{46} = 3)}{P(X_{123} = 4)}$$

$$= \frac{\frac{10!}{3!4!3!}(1/6)^3(1/2)^4(1/3)^3}{\frac{10!}{4!6!}(1/2)^4(1/2)^6}$$

$$= \frac{6!}{3!3!}\frac{2^3}{3^6} = 20 \times \frac{8}{729} = \frac{160}{729} = .2195$$

(We are using the fact that $P(X_5 = 3, X_{123} = 4) = P(X_5 = 3, X_{123} = 4, X_{46} = 3)$ since $\{X_5 = 3, X_{123} = 4\}$ implies $\{X_{46} = 3\}$, and the marginal distribution of X_{123} is Binomial $(10, \frac{1}{2})$).

4. (5 marks) Let X_1, \ldots, X_r be independent Poisson random variables, with X_i distributed as $Poisson(\lambda_i), i = 1, \ldots, r$. Let *n* be a fixed positive integer. Compute

$$P(X_1 = x_1, \dots, X_r = x_r \mid \sum_{i=1}^r X_i = n)$$

for all $(x_1, \ldots, x_r)^T \in \mathbb{R}^r$. You may use the fact that $\sum_{i=1}^r X_i$ has a Poisson $(\lambda_1 + \ldots + \lambda_r)$ distribution.

Solution: We have

$$P\left(X_{1} = x_{1}, \dots, X_{r} = x_{r} \mid \sum_{i=1}^{r} X_{i} = n\right) = \frac{P\left(X_{1} = x_{1}, \dots, X_{r} = x_{r}, \sum_{i=1}^{r} X_{i} = n\right)}{P\left(\sum_{i=1}^{r} X_{i} = n\right)}.$$

First, we note that the above conditional probability is nonzero if and only if each of x_1, \ldots, x_r is a nonnegative integer and $\sum_{i=1}^r x_i = n$ (since otherwise the numerator on the right hand side above is 0). For x_1, \ldots, x_r nonnegative integers satisfying $\sum_{i=1}^r x_i = n$, we have

$$\frac{P(X_1 = x_1, \dots, X_r = x_r, \sum_{i=1}^r X_i = n)}{P(\sum_{i=1}^r X_i = n)} = \frac{P(X_1 = x_1, \dots, X_r = x_r)}{P(\sum_{i=1}^r X_i = n)}$$
$$= \frac{P(X_1 = x_1) \dots P(X_r = x_r)}{P(\sum_{i=1}^r X_i = n)}$$
$$= \frac{(\lambda_1^{x_1}/x_1!)e^{-\lambda_1} \dots (\lambda_r^{x_r}/x_r!)e^{-\lambda_r}}{((\lambda_1 + \dots + \lambda_r)^n/n!)e^{-(\lambda_1 + \dots + \lambda_r)}}$$
$$= \frac{n!}{x_1! \dots x_k!} p_1^{x_1} \dots p_r^{x_r},$$

where $p_i = \frac{\lambda_i}{\lambda_1 + \ldots + \lambda_r}$ for $i = 1, \ldots, r$. Thus we see that the conditional distribution of $(X_1, \ldots, X_r)^T$ given $\sum_{i=1}^r X_i = n$ is Multinomial with parameters n and p_1, \ldots, p_r .

Name

5. (5 marks) Let (X_1, \ldots, X_k) have a multinomial distribution with parameters n and p_1, \ldots, p_k . For $i, j = 1, \ldots, k$, find $E[X_i X_j]$. *Hint:* Write $X_i = X_{i1} + \ldots + X_{in}$ where

$$X_{ik} = \begin{cases} 1 & \text{if the } k \text{th multinomial experiment has outcome } i \\ 0 & \text{otherwise,} \end{cases}$$

and similarly write $X_j = X_{j1} + \ldots + X_{jn}$.

Solution: First suppose that $i \neq j$. Expressing X_i and X_j as in the hint, we have

$$E[X_i X_j] = E[(X_{i1} + \dots + X_{in})(X_{j1} + \dots + X_{jn})]$$

= $\sum_{k=1}^n \sum_{\ell=1}^n E[X_{ik} X_{j\ell}]$
= $\sum_{k=1}^n \sum_{\ell=1}^n P(\text{trial } k \text{ has outcome } i \text{ and trial } \ell \text{ has outcome } j)$
= $\sum_{k=1}^n \sum_{\ell \neq k} P(\text{trial } k \text{ has outcome } i \text{ and trial } \ell \text{ has outcome } j),$

where the last equality follows because a given trial cannot have both outcome i and outcome j. Since the trials are independent, we have

$$E[X_i X_j] = \sum_{k=1}^n \sum_{\ell \neq k} P(\text{trial } k \text{ has outcome } i) P(\text{trial } \ell \text{ has outcome } j)$$
$$= \sum_{k=1}^n \sum_{\ell \neq k} p_i p_j = n(n-1) p_i p_j.$$

If i = j then $E[X_iX_j] = E[X_i^2] = Var(X_i) + E[X_i]^2$. But X_i has a Binomial (n, p_i) distribution, so $E[X_i^2] = np_i(1 - p_i) + (np_i)^2 = np_i(1 - p_i + np_i) = np_i(1 + (n-1)p_i)$.

Name