Queen's University Department of Mathematics and Statistics

MTHE/STAT 353 Homework 7 Due March 28, 2022

- For each question, your solution should start on a fresh page. You can write your solution using one of the following three formats:
 - (1) Use your own paper.
 - (2) Use a tablet, such as an ipad.
 - (3) Use document creation software, such as Word or LaTeX.
- Write your name and student number on the first page of each solution, and number your solution.
- For each question, photograph or scan each page of your solution (unless your solution has been typed up and is already in electronic format), and combine the separate pages into a single file. Then upload each file (one for each question), into the appropriate box in Crowdmark.

Instructions for submitting your solutions to Crowdmark are also here.

Total Marks : 30

Name

1. (5 marks) Let X_1 and X_2 be random variables and Y a random vector. Use the Law of Total Expectation to show the following generalization of the conditional variance formula:

$$Cov(X_1, X_2) = E[Cov((X_1, X_2) | Y)] + Cov(E[X_1 | Y], E[X_2 | Y])$$

Here, $\operatorname{Cov}((X_1, X_2) \mid Y) = E[X_1X_2 \mid Y] - E[X_1 \mid Y]E[X_2 \mid Y]$ is that function of Y whose value when Y = y is the covariance between X_1 and X_2 with respect to the conditional joint distribution of X_1 and X_2 given Y = y.

Name

- **2.** (6 marks) A coin, having probability p of coming up heads, is successively flipped until at least one head and one tail have been flipped.
 - (a) (3 marks) Find the expected number of flips needed.
 - (b) (3 marks) Find the expected number of flips that land on heads.

Name

3. (7 marks) Let X_i , $i \ge 1$, be independent Uniform(0,1) random variables, and let $X_0 = x$, for some $x \in [0, 1]$. Define N(x) by

$$N(x) = \min(n \ge 1 : X_n < X_{n-1}).$$

In words, N(x) is the first "time" that an X value is smaller than the immediately preceding X value. Let $\overline{N}(x) = E[N(x)]$, for $0 \le x \le 1$.

- (a) (4 marks) Derive an integral equation for $\overline{N}(x)$ by conditioning on X_1 .
- (b) (3 marks) Differentiate both sides of the equation derived in part(a) and solve the resulting equation obtained (note that there is a boundary condition $\overline{N}(1) = 1$).

Name

4. (6 marks) A fair coin is tossed successively. Let K_n be the number of tosses until n consecutive heads occur for the first time. By conditioning on K_{n-1} express $E[K_n]$ in terms of $E[K_{n-1}]$, then solve this recursion (note that $E[K_1] = 2$) and find $E[K_n]$.

Name

- 6
- 5. (6 marks) Let X and Y be continuous random variables with joint density function

$$f(x,y) = \begin{cases} \frac{y^3}{2}e^{-y(x+1)} & \text{for } x > 0, \ y > 0\\ 0 & \text{otherwise.} \end{cases}$$

Find Var(X) using the conditional variance formula.