Queen's University Department of Mathematics and Statistics

MTHE/STAT 353

Homework 8 Due April 4, 2022

- For each question, your solution should start on a fresh page. You can write your solution using one of the following three formats:
 - (1) Use your own paper.
 - (2) Use a tablet, such as an ipad.
 - (3) Use document creation software, such as Word or LaTeX.
- Write your name and student number on the first page of each solution, and number your solution.
- For each question, photograph or scan each page of your solution (unless your solution has been typed up and is already in electronic format), and combine the separate pages into a single file. Then upload each file (one for each question), into the appropriate box in Crowdmark.

Instructions for submitting your solutions to Crowdmark are also here.

Total Marks: 25

Name

Student Number

1. (4 marks) For each of the following parts, either give a distribution such that the given function is the mgf of that distribution, or show why the given function cannot be the mgf of any distribution.

- (a) (2 marks) $M(t) = \frac{1}{4}(1 + e^t)^2$.
- (b) (2 marks) $M(t) = 1 + t^2$. Hint: Consider $Var(X^2)$.

2. (6 marks) Let X_1, X_2, \ldots be a sequence of random variables such that X_n has a Binomial distribution with parameters n and p_n . Assume that the sequence $\{p_n\}_{n=1}^{\infty}$ satisfies $\lim_{n\to\infty} np_n = \lambda$, where $\lambda > 0$. Let X have a Poisson distribution with parameter λ . Let $M_{X_n}(t)$ be the mgf of X_n and let $M_X(t)$ be the mgf of X. Compute $M_{X_n}(t)$ and $M_X(t)$ and show that $M_{X_n}(t) \to M_X(t)$ as $n \to \infty$ for every t. You may use the fact that if $\{x_n\}$ is a sequence satisfying $x_n \to x$ as $n \to \infty$ then $(1 + \frac{x_n}{n})^n \to e^x$ as $n \to \infty$.

3. (3 marks) Let $\mu > 0$ be given. Let k be a positive integer. Give an example of a distribution with mean μ and finite variance such that if X is a random variable with that distribution then

$$P(|X - E[X]| \ge k\sqrt{\operatorname{Var}(X)}) = \frac{1}{k^2}.$$

(i.e., Chebyshev's inequality is achieved).

- **4.** (6 marks) Let X be a random variable with mgf $M_X(t)$, and suppose that $M_X(t)$ exists for all t.
 - (a) (3 marks) Using Markov's inequality, show that for any t > 0 and any $a \in \mathbb{R}$,

$$P(X \ge a) \le e^{-at} M_X(t).$$

(b) (3 marks) For any fixed a, minimizing the right hand side of the inequality in part(a) over t > 0 gives what is called the *Chernoff bound* to $P(X \ge a)$. If $X \sim N(0, 1)$, find Chernoff's bound to $P(X \ge a)$ for a > 0.

5. (6 marks) Let X_1, X_2, X_3, \ldots be a sequence of independent random variables with $E[X_i] = \mu_i$ and $Var(X_i) = \sigma_i^2$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ denote the sample mean of X_1, \ldots, X_n for $n \geq 1$. Suppose that $\frac{1}{n} \sum_{i=1}^n \mu_i \to \mu$ as $n \to \infty$, for some $\mu \in \mathbb{R}$. Finally, suppose that $\sigma_i^2 \leq M$ for all $i \geq 1$, for some finite, positive M. Show that for any $\epsilon > 0$, $P(|\overline{X}_n - \mu| \geq \epsilon) \to 0$ as $n \to \infty$.