Review for Final Exam, Apr. 8

Part 1
Questions 1-4 of 2016 Final Exam.

Review for Final Exam, Apr. 9

Part 2
Questions 5-6 of 2016 Exam.
Questions 3, 5, 6 of 2013 Exam.

Question involving m.g.f.s and the strong law of large numbers! Let X_1, X_2, \ldots be i.i.d. random variables, each with mean μ and common m.g.f. $M_X(t)$.

Show that $M_X(\frac{t}{n})^n \to e^\mu$ as $n \to \infty$.

Solution:

\[
M_X(\frac{t}{n})^n = M_{X_1}(\frac{t}{n}) \times \cdots \times M_{X_n}(\frac{t}{n})
\]

where $M_{X_i}(t)$ is the m.g.f. of X_i.

\[
= M_{X_1 + \cdots + X_n}(\frac{t}{n})
\]

\[
= E\left[e^{\frac{t}{n}(X_1 + \cdots + X_n)}\right]
\]

\[
= E\left[e^{\bar{X}_n}\right]
\]

but $\bar{X}_n \to \mu$ a.s. by the strong law of large numbers, and $e^{\bar{X}_n} \to e^\mu$ as $n \to \infty$ since e^x is a continuous function.

\[
\to E(e^{\mu}) = e^\mu
\]
Queen’s University
Department of Mathematics and Statistics

MTHE/STAT 353
Final Examination April 16, 2016
Instructor: G. Takahara

• “Proctors are unable to respond to queries about the interpretation of exam ques-
tions. Do your best to answer exam questions as written.”

• “The candidate is urged to submit with the answer paper a clear statement of
any assumptions made if doubt exists as to the interpretation of any question that
requires a written answer.”

• This material is copyrighted and is for the sole use of students registered in MTHE/STAT
353 and writing this examination. This material shall not be distributed or disseminated. Failure to abide by these conditions is a breach of copyright and may also
constitute a breach of academic integrity under the University Senates Academic
Integrity Policy Statement.

• Formulas and tables are attached.

• An 8.5 × 11 inch sheet of notes (both sides) is permitted. Simple calculators are
permitted (Casio 991, red, blue, or gold sticker). HOWEVER, do reasonable sim-
plifications.

• Write the answers in the space provided, continue on the backs of pages if needed.

• SHOW YOUR WORK CLEARLY. Correct answers without clear work showing
how you got there will not receive full marks.

• Marks per part question are shown in brackets at the right margin.

Marks: Please do not write in the space below.

Problem 1 [10] Problem 4 [10]
Problem 2 [10] Problem 5 [10]
Problem 3 [10] Problem 6 [10]

Total: [60]
1. Let X, Y, Z be jointly continuous random variables with joint pdf

$$f(x, y, z) = \begin{cases} \frac{cxyz}{c} & \text{for } 0 < x < y < z < 1 \\ 0 & \text{otherwise,} \end{cases}$$

for some normalizing constant c.

(a) Find c.

$$1 = \int_0^1 \int_0^x \int_0^z cxyz \, dz \, dy \, dx$$

$$= c \int_0^1 \int_0^x \frac{y^2}{2} \, dy \, dx$$

$$= c \left[\frac{1}{3} x^2 y^2 \right]_0^1 = c \frac{1}{3} = \frac{c}{48}$$

$$\Rightarrow c = 48$$

(b) Compute $P(Y \leq 1/2)$.

$$P(Y \leq \frac{1}{2})$$

$$= 48 \int_0^{1/2} \int_0^y \frac{y^2}{2} \, dx \, dy$$

$$= 48 \int_0^{1/2} \frac{y^3}{2} \left[\int_0^y dx \right] \, dy$$

$$= 48 \int_0^{1/2} \frac{y^3}{2} \left(\frac{1}{2} - \frac{y^2}{2} \right) \, dy$$

$$= 48 \int_0^{1/2} \frac{y^3}{4} \left(1 - y^2 \right) \, dy$$

$$= 48 \left[\frac{1}{4} \left(\frac{1}{16} \right)^{1/2} - \frac{1}{24 \times 64} \right]$$

$$= 48 \left(\frac{1}{16} - \frac{1}{24 \times 64} \right) = \frac{3}{16} - \frac{1}{32} = \frac{5}{32}.$$
(b) (extra worksheet if needed)
2. Let \((X_1, Y_1, Z_1)^T, \ldots, (X_{10}, Y_{10}, Z_{10})^T\) be 10 random vectors in \(\mathbb{R}^3\) that are mutually independent and discrete, each with joint pmf

\[p(x, y, z) = \begin{cases} \frac{x+y+z}{12} & \text{for } x \in \{0, 1\}, y \in \{0, 1\}, z \in \{0, 1\} \\ 0 & \text{otherwise.} \end{cases} \]

Let \(Z_i\) be the number these vectors whose components sum to \(i\), for \(i = 1, 2, 3\). Find \(P(Z_1 = 2, Z_2 = 5, Z_3 = 3)\). [10]

Here, we have 10 multinomial trials. In the \(i\)th trial, \((X_i, Y_i, Z_i)\) is generated and the sum of the components is recorded. Possible outcomes of each trial are 0, 1, 2, or 3.

\[
\begin{array}{c|c|c}
(X_i, Y_i, Z_i) & P(X_i, Y_i, Z_i) & P(\text{outcome of trial is } i) \\
\hline
0 0 0 & 0 & 0 \\
0 0 1 & 1/12 & 1 \quad 3/12 = 1/4 \\
0 1 0 & 1/12 & 2 \quad 6/12 = 1/2 \\
0 1 1 & 2/12 & 3 \quad 3/12 = 1/4 \\
1 0 0 & 1/12 & \\
1 0 1 & 2/12 & \\
1 1 0 & 2/12 & \\
1 1 1 & 3/12 & \\
\end{array}
\]

\((Z_1, Z_2, Z_3)\) has a multinomial distribution with parameters \(n = 10\), \(p_1 = \frac{1}{4}\), \(p_2 = \frac{1}{2}\), \(p_3 = \frac{1}{4}\).

\[
P(Z_1 = 2, Z_2 = 5, Z_3 = 3)
= \binom{10}{2,5,3} \left(\frac{1}{4}\right)^2 \left(\frac{1}{2}\right)^5 \left(\frac{1}{4}\right)^3
= \frac{10!}{2!5!3!} \cdot \frac{1}{2^{15}} = \frac{\frac{6 \times 7 \times 8 \times 9 \times 10}{2 \times 6}}{2^{15}} = \frac{1}{2^{15}}
= \frac{4 \times 7 \times 9 \times 10}{2^{15}} = \frac{630}{2^{13}} = \frac{315}{2^{12}}
\]
3. Let X_1, \ldots, X_n be independent random variables, each with an Exponential distribution with mean 1. Let $X_{(1)}$ and $X_{(2)}$ denote the first and second order statistics, respectively. Find $\text{Cov}(e^{X_{(1)}}, e^{X_{(2)}})$.

Each X_i has pdf $f(x) = e^{-x}$, $x > 0$.

and cdf $F(x) = 1 - e^{-x}$, $x > 0$

pdf of $X_{(1)}$ is

$$f_1(x_1) = n (1 - F(x_1))^{n-1} f(x_1) = n (e^{-x_1})^{n-1} e^{-x_1} = n e^{-nx_1}, \quad x_1 > 0$$

pdf of $X_{(2)}$ is

$$f_2(x_2) = F(x_2) f(x_2) (1 - F(x_2))^{n-2} n (n-1) = (1 - e^{-x_2}) e^{-x_2} (e^{-x_2})^{n-2} n (n-1) = n (n-1) (1 - e^{-x_2}) e^{-(n-1)x_2}, \quad x_2 > 0$$

Joint pdf of $(X_{(1)}, X_{(2)})$ is

$$f_{12}(x_1, x_2) = n (n-1) f(x_1) f(x_2) (1 - F(x_2))^{n-2} = n (n-1) e^{-x_1} e^{-x_2} (e^{-x_2})^{n-2} = n (n-1) e^{-x_1} e^{-(n-1)x_2}, \quad 0 < x_1 < x_2$$

Then

$$\text{Cov}(e^{X_{(1)}}, e^{X_{(2)}}) = E[e^{X_{(1)} + X_{(2)}}] - E[e^{X_{(1)}}]E[e^{X_{(2)}}]$$

$$E[e^{X_{(1)} + X_{(2)}}] = \int_0^\infty \int_0^\infty e^{x_1 + x_2} n (n-1) e^{-x_1} e^{-(n-1)x_2} \, dx_2 \, dx_1$$

$$= n (n-1) \int_0^\infty \left[\int_0^{x_2} e^{-(n-2)x_2} \, dx_2 \right] \, dx_1$$
3. (extra worksheet, if needed)

\[
= n(n-1) \int_0^\infty \left(e^{-\frac{(n-1)x_2}{2}} \right) dx_1
\]

\[
= \frac{n(n-1)}{n-2} \int_0^\infty e^{-(n-2)x_1} dx_1
\]

\[
= \frac{n(n-1)}{(n-2)^2} \int_0^\infty (n-2) e^{-(n-2)x_1} dx_1 = \frac{n(n-1)}{(n-2)^2}
\]

\[
E[e^{x_1}] = \int_0^\infty e^{x_1} n e^{-x_1} dx_1 = n \int_0^\infty e^{-(n-1)x_1} dx_1
\]

\[
= \frac{n}{n-1} \int_0^\infty (n-1) e^{-(n-1)x_1} dx_1
\]

\[
E[e^{x_2}] = \int_0^\infty e^{x_2} n(n-1)(1-e^{-x_2}) e^{-(n-1)x_2} dx_2
\]

\[
= n(n-1) \left[\int_0^\infty e^{-(n-2)x_2} dx_2 - \int_0^\infty e^{-(n-1)x_2} dx_2 \right]
\]

\[
= n(n-1) \left[\frac{1}{n-2} - \frac{1}{n-1} \right]
\]

\[
= \frac{n(n-1)}{(n-1)(n-2)} = \frac{n}{n-2}
\]

So, finally,

\[
\text{Cov}(e^{x_1}, e^{x_2}) = \frac{n(n-1)}{n-2} - \frac{(n(n-1))(n-2)}{n-2}
\]

\[
= \frac{n(n-1)(n-1) - n^2(n-2)}{(n-1)(n-2)^2}
\]

\[
= \frac{n(n^2-2n+1) - n^3 + 2n^2}{n(n-1)(n-2)^2}
\]

\[
= \frac{n}{(n-1)(n-2)^2}
\]
4(a). A triangle has vertices labelled 0, 1 and 2. A particle moves randomly among the vertices as follows. From its current location it will move to the adjacent vertex clockwise with probability \(p \) and to the adjacent vertex counterclockwise with probability \(1 - p \), where \(p \in (0, 1) \) is fixed. If the particle starts at vertex 0 compute the expected number of moves until the particle returns to vertex 0.

Hint: Let \(T_0 \) be the desired expected number of moves and let \(T_i , i = 1, 2, \) denote the expected number of moves to first reach vertex 0 starting from vertex \(i \). By conditioning set up a system of equations for \(T_0 , T_1 , \) and \(T_2 \).

\[
\begin{align*}
\text{Condition on first move of the particle.} & \\
\text{Get } T_0 &= p(1 + T_1) + (1-p)(1 + T_2) \quad (1) \\
T_1 &= p(1 + T_2) + (1-p)(1) \quad (2) \\
T_2 &= p(1) + (1-p)(1 + T_1) \quad (3)
\end{align*}
\]

\((3) \Rightarrow T_2 = 1 + (1-p)T_1 \)

Plug into \((2) \):

\[
T_1 = 1 + p(1 + (1-p)T_1)
\]

\[
\Rightarrow T_1 = \frac{1 + p}{1-p(1-p)}
\]

Then

\[
T_2 = 1 + (1-p) \frac{1 + p}{1-p(1-p)} = \frac{1 - p(1-p) + (1-p)(1+p)}{1-p(1-p)}
\]

\[
= \frac{1 - p + p^2 + 1 - p^2}{1-p(1-p)}
\]

\[
= \frac{2-p}{1-p(1-p)}
\]

Then from \((1) \), get

\[
T_0 = p\left(1 + \frac{1 + p}{1-p(1-p)}\right) + (1-p)\left(1 + \frac{2-p}{1-p(1-p)}\right)
\]

\[
= \left(1 + \frac{p(1+p) + (1-p)(2-p)}{1-p(1-p)}\right)
\]

\[
= \frac{1 + p(1+p) + (1-p)(2-p)}{1-p(1-p)}
\]
(b) Let \(p \in (0,1) \) be fixed. A coin with probability of heads \(p \) is flipped until a heads is obtained. Let \(Y \) denote the number of flips required. The coin is then flipped \(Y \) times. Let \(X \) denote the number of heads obtained in these \(Y \) flips. Find the mean and variance of \(X \).

\[Y \sim \text{Geometric}(p) \]
\[X \mid Y = y \sim \text{Binomial}(y, p) \]

\[
E[X] = E(E[X \mid Y]) = E[\rho Y] = p E[Y] = p \left(\frac{1}{p} \right) = 1
\]

\[
\text{Var}(X) = E[\text{Var}(X \mid Y)] + \text{Var}(E[X \mid Y])
\]
\[
= E[\gamma \rho (1-\rho)] + \text{Var}(\rho Y)
\]
\[
= \rho (1-\rho) E[Y] + \rho^2 \text{Var}(Y)
\]
\[
= 1-\rho + \rho^2 \frac{1-\rho}{\rho^2} = 2(1-\rho)
\]
5(a). Let Y_n have an Exponential(n) distribution for $n \geq 1$. Let X be an arbitrary random variable and let $X_n = X + Y_n$. Show that X_n converges to X almost surely. [5]

Let $\varepsilon > 0$ be given.

$$P(|X_n - X| > \varepsilon) = P(|X + Y_n - X| > \varepsilon)$$
$$= P(|Y_n| > \varepsilon)$$
$$= P(Y_n > \varepsilon)$$
$$= e^{-ne^\varepsilon}$$

So

$$\sum_{n=1}^{\infty} P(|X_n - X| > \varepsilon) = \sum_{n=1}^{\infty} e^{-ne^\varepsilon}$$
$$= \sum_{n=1}^{\infty} (e^{-e^\varepsilon})^n \quad \text{(note } e^{-e^\varepsilon} \in (0,1))$$
$$= \frac{1}{1 - e^{-e^\varepsilon}} - 1 < \infty$$

So $X_n \to X$ a.s. by the sufficient condition from class.
(b) Let \(\{X_n\}_{n=1}^{\infty} \) and \(\{Y_n\}_{n=1}^{\infty} \) be two sequences of random variables and suppose that \(X_n \) converges to \(X \) in probability and \(Y_n \) converges to \(Y \) in probability, for some random variables \(X \) and \(Y \). Show that \(X_n + Y_n \) converges to \(X + Y \) in probability. \textit{Hint:} Use the triangle inequality and the fact that if \(a \) and \(b \) are positive numbers then \(a + b > \epsilon \) implies at least one of \(a > \epsilon/2 \) or \(b > \epsilon/2 \) must hold.

Let \(\epsilon > 0 \) be given.

\[
P(|X_n + Y_n - (X + Y)| > \epsilon)
= P(|X_n - X + Y_n - Y| > \epsilon)
\leq P(|X_n - X| + |Y_n - Y| > \epsilon) \quad \text{(by triangle inequality)}
\leq P(|X_n - X| > \frac{\epsilon}{2}) + P(|Y_n - Y| > \frac{\epsilon}{2})
\rightarrow 0 \quad \text{as } n \rightarrow \infty \quad \text{since } X_n \xrightarrow{p} X \text{ and } Y_n \xrightarrow{p} Y.

Therefore, \(X_n + Y_n \xrightarrow{p} X + Y \).
6(a). Let X_1, X_2, \ldots be a sequence of random variables, each having a Uniform(0,1) distribution, and let X be a random variable, also with a Uniform(0,1) distribution, independent of all the X_i's. Show that X_n does not converge almost surely to X as $n \to \infty$.

We show that X_n does not converge to X in probability. Let $\varepsilon > 0$ be given, $P(\{X_n - X > \varepsilon\}) = (1 - \varepsilon)^2 \to 0$ as $n \to \infty$. Thus $X_n \not\to X$. This implies that $X_n \not\to X$.

(b) Let (Ω, P) be a probability space. Let $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$ be a decreasing sequence of sets in Ω and let $A = \bigcap_{n=1}^{\infty} A_n$. Let

$$X_n(\omega) = I_{A_n}(\omega) = \begin{cases} 1 & \text{if } \omega \in A_n \\ 0 & \text{if } \omega \notin A_n \end{cases} \quad \text{and} \quad X(\omega) = I_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A. \end{cases}$$

Show that X_n converges to X almost surely.

If $\omega \in A$ then $\omega \in \bigcap_{n=1}^{\infty} A_n$, i.e., $\omega \in A_n$ for every n. Then $X_n(\omega) = 1$ for every n. Therefore, $X_n(\omega) \to 1 = X(\omega)$ as $n \to \infty$. If $\omega \notin A$ then $\omega \notin A_m$ for some m. But since $\{A_n\}$ is a decreasing sequence we have that $\omega \notin A_n$ for all $n \geq m$. So $X_n(\omega) = 0$ for all $n \geq m$. Therefore, $X_n(\omega) \to 0 = X(\omega)$ as $n \to \infty$. So $X_n(\omega) \to X(\omega)$ for all $\omega \in \Omega$.

So $X_n \overset{a.s.}{\to} X$.

So $X_n \to X$.
Formula Sheet

Special Distributions

Beta distribution with parameters $\alpha > 0$ and $\beta > 0$:

$$f(x) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} & \text{if } 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

$$E[X] = \frac{\alpha}{\alpha + \beta}, \quad \text{Var}(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

$\alpha = 1$ and $\beta = 1$ gives the Uniform distribution on $(0, 1)$.

Gamma distribution with parameters $r > 0$ and $\lambda > 0$:

$$f(x) = \begin{cases} \frac{\lambda^r}{\Gamma(r)} x^{r-1}e^{-\lambda x} & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

$$E[X] = \frac{r}{\lambda}, \quad \text{Var}(X) = \frac{r}{\lambda^2}$$

$$M_X(t) = \left(\frac{\lambda}{\lambda - t} \right)^r \quad \text{for } t < \lambda.$$

$r = 1$ gives the Exponential distribution with mean $1/\lambda$.

Geometric distribution with parameter $p \in (0, 1)$:

$$f(k) = \begin{cases} p(1-p)^{k-1} & \text{if } k = 1, 2, 3, \ldots \\ 0 & \text{otherwise.} \end{cases}$$

$$E[X] = \frac{1}{p}, \quad \text{Var}(X) = \frac{1-p}{p^2}$$

$$M_X(t) = \frac{pe^t}{1 - (1-p)e^t} \quad \text{for } t \neq -\ln(1-p).$$

Binomial distribution with parameters n and $p \in (0, 1)$:

$$f(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & \text{if } k = 0, 1, \ldots, n \\ 0 & \text{otherwise.} \end{cases}$$

$$E[X] = np, \quad \text{Var}(X) = np(1-p)$$

$$M_X(t) = (p + (1-p)e^t)^n \quad \text{for } t \in \mathbb{R}.$$
Queen’s University
Department of Mathematics and Statistics

MTHE/STAT 353
Final Examination April 13, 2013
Instructor: G. Takahara

• “Proctors are unable to respond to queries about the interpretation of exam ques-
tions. Do your best to answer exam questions as written.”

• “The candidate is urged to submit with the answer paper a clear statement of
any assumptions made if doubt exists as to the interpretation of any question that
requires a written answer.”

• Formulas and tables are attached.

• An 8.5 × 11 inch sheet of notes (both sides) is permitted.

• Simple calculators are permitted (Casio 991, red, blue, or gold sticker). HOWEVER,
do reasonable simplifications.

• Write the answers in the space provided, continue on the backs of pages if needed.

• SHOW YOUR WORK CLEARLY. Correct answers without clear work showing
how you got there will not receive full marks.

• Marks per part question are shown in brackets at the right margin.

Marks: Please do not write in the space below.

Problem 1 [10] Problem 4 [10]

Problem 2 [10] Problem 5 [10]

Problem 3 [10] Problem 6 [10]

Total: [60]
1. Suppose we have B empty boxes initially. An experiment consists of choosing a box at random and then placing a ball inside the box. Suppose this experiment is repeated independently $2n$ times, first using n red balls and then using n blue balls (so the B boxes now contains $2n$ balls in total). Write an expression (which may be left as a sum) for the expected number of boxes that contain the same number of red and blue balls. [10]
2. (a) If X and Y are two continuous random variables with correlation coefficient ρ, explain why (X, Y) cannot have a joint density if $|\rho| = 1$. [3]

(b) A fair die is rolled twice. The rolls are independent. Let

$$X = \begin{cases}
1 & \text{if the sum of the two rolls is greater than 6} \\
0 & \text{otherwise}
\end{cases}$$

and let Y be the number of sixes rolled. Compute the correlation coefficient between X and Y. [7]
3. Let X have a Gamma($\lambda, 1$) distribution and Y have a Poisson(λ) distribution ($\lambda > 0$), and X and Y are independent.

(a) For $k > \lambda$, apply Chebyshev's inequality to show that $P(X > k) \leq \lambda/(k - \lambda)^2$. [3]

$$P(X > k) = P(X - \lambda > k - \lambda) \quad \text{(note } k - \lambda > 0)$$

$$\leq P(|X - \lambda| > k - \lambda)$$

$$\leq \frac{\text{Var}(X)}{(k - \lambda)^2} \quad \text{(by Chebyshev)}$$

$$= \frac{\lambda}{(k - \lambda)^2}$$

(b) Using conditioning and applying Markov's inequality, show that $P(X > Y + 1) \leq 1 - e^{-\lambda}$. [7]

$$P(X > Y + 1) = \sum_{n=0}^{\infty} P(X > Y + 1 \mid Y = n) P(Y = n)$$

$$= \sum_{n=0}^{\infty} P(X > n + 1) \frac{\lambda^n}{n!} e^{-\lambda}$$

$$\leq \sum_{n=0}^{\infty} \frac{E[X]}{n+1} \frac{\lambda^n}{n!} e^{-\lambda} \quad \text{(by Markov)}$$

$$= \sum_{n=0}^{\infty} \frac{\lambda}{n+1} \frac{\lambda^n}{n!} e^{-\lambda}$$

$$= e^{-\lambda} \sum_{n=0}^{\infty} \frac{\lambda^{n+1}}{(n+1)!}$$

$$= e^{-\lambda} (e^\lambda - 1)$$

$$= 1 - e^{-\lambda}$$
4. Suppose an urn contains 6 balls, k of which are red and $6 - k$ are blue. At each draw, a ball is drawn at random and replaced by a ball of the other colour (if a red ball is drawn it is replaced by a blue ball and vice versa). For $k \neq 3$, let r_k denote the expected number of draws until the urn contains 3 red and 3 blue balls. For $k = 3$, let r_3 denote the expected number of draws until the urn returns to having 3 red and 3 blue balls. Compute r_3. [10]
5. Let X_1, X_2, \ldots be a sequence of random variables such that $X_n \in [0, 1]$ for all n and X_n has cdf $F_n(x) = x^n$ for $x \in [0, 1]$ (and $F_n(x) = 0$ for $x < 0$ and $F_n(x) = 1$ for $x > 1$). Show that $X_n \to 1$ in the rth mean, for any positive integer r, and that $X_n \to 1$ with probability 1.

\[E[|X_n - 1|^r] = E[(1 - X_n)^r] \quad \text{since } X_n \leq 1 \text{ w.p. 1.} \]
\[= \tau_1 \int_0^1 (1 - x)^r x^{n-1} \, dx \quad \text{(the pdf of } X_n \text{ is } x^{n-1} \text{ for } x \in [0, 1]) \]
\[= n \int_0^1 x^{n-1} (1-x)^{(r+1)-1} \, dx \]
\[= \frac{n \Gamma(n) \Gamma(r+1)}{\Gamma(n+r+1)} \int_0^1 \frac{\Gamma(n+r+1)}{\Gamma(n) \Gamma(r+1)} x^{n-1} (1-x)^{(r+1)-1} \, dx \]
\[= \frac{n(n-1)! \cdot r!}{(n+r)!} = \frac{r!}{(n+1)x \ldots x(n+r)} \to 0 \text{ as } n \to \infty \]

\[\sum_{n=1}^{\infty} P(|X_n - 1| \geq \varepsilon) = \sum_{n=1}^{\infty} (1 - \varepsilon)^n = \frac{1}{1 - (1 - \varepsilon)} - 1 \]
\[= \frac{1 - \varepsilon}{\varepsilon} < \infty \]

By sufficient condition for convergence a.s. we have $X_n \Rightarrow 1$.

Let $\varepsilon > 0$ be given.

\[P(1 |X_n - 1| > \varepsilon) = P(1 - X_n > \varepsilon) = P(X_n < 1 - \varepsilon) \]
\[= F_n(1 - \varepsilon) \]
\[= (1 - \varepsilon)^n \]

\[\sum_{n=1}^{\infty} P(1 |X_n - 1| > \varepsilon) = \sum_{n=1}^{\infty} (1 - \varepsilon)^n = \frac{1}{1 - (1 - \varepsilon)} - 1 \]
\[= \frac{1 - \varepsilon}{\varepsilon} < \infty \]

By sufficient condition for convergence a.s. we have $X_n \Rightarrow 1$.

\[\]
6. Let X_1, \ldots, X_n by independent random variables, each with a Uniform\((-k, k)\) distribution (so each X_i has pdf $f(x) = \frac{1}{2k} I_{[-k,k]}(x)$). Use the central limit theorem to approximate the probability

$$P\left(|X_1^r + \ldots + X_n^r| > kp\right),$$

where r is an odd positive integer and p is a positive real number. Express your answer in terms of k, p, r, n and Φ, the cumulative distribution function of the standard normal distribution. Based on this approximation, for a given r, for what values of p does this probability go to 0 as $k \to \infty$?

$$\frac{X_1^r, \ldots, X_n^r}{\sqrt{n/2k}} \overset{d}{\to} N(0,1)$$

Then

$$P\left(|X_1^r + \ldots + X_n^r| > kp\right) = P\left(\frac{\sqrt{k(2r+1)}}{\sqrt{n}} |X_1^r + \ldots + X_n^r| > \frac{\sqrt{k(2r+1)}}{\sqrt{n}} kp\right) \Rightarrow 1 \geq \Phi \left(\frac{\sqrt{k(2r+1)} kp + \frac{k}{2r+1}}{\sqrt{n}} \right)$$

Since $\Phi \left(\frac{\sqrt{k(2r+1)} kp + \frac{k}{2r+1}}{\sqrt{n}} \right) \to 0$ as $k \to \infty$ for all $p > 0$ and so

$$\Phi \left(\frac{\sqrt{k(2r+1)} (kp + \frac{1}{2r+1})}{\sqrt{n}} \right) \to 1$$

as $k \to \infty$ and $(*) \to 0$. \[10\]
Formula Sheet

Special Distributions

Gamma with parameters α and β:
\[
f(x) = \begin{cases}
\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x} & \text{if } x > 0 \\
0 & \text{otherwise.}
\end{cases}
\]
\[E[X] = \frac{\alpha}{\beta}, \quad \text{Var}(X) = \frac{\alpha}{\beta^2}.
\]

Beta with parameters α and β:
\[
f(x) = \begin{cases}
\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{-\beta-1} & \text{if } 0 < x < 1 \\
0 & \text{otherwise.}
\end{cases}
\]
\[E[X] = \frac{\alpha}{\alpha+\beta}, \quad \text{Var}(X) = \frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}.
\]

Poisson with parameter λ:
\[
f(k) = \begin{cases}
\frac{\lambda^k e^{-\lambda}}{k!} & \text{if } k = 0, 1, \ldots \\
0 & \text{otherwise.}
\end{cases}
\]
\[E[X] = \lambda, \quad \text{Var}(X) = \lambda.
\]

Normal (Gaussian) with mean 0 and variance 1:
\[
f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} \quad \text{and} \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.
\]