Every random variable has an associated probability space.

What is a probability space?
Let S be an arbitrary set. Let \mathcal{F} be a set of subsets of S satisfying
1. $\emptyset \in \mathcal{F}$
2. If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$
3. If $A_1, A_2, \ldots \in \mathcal{F}$ then $\bigcup A_i \in \mathcal{F}$

Any set of subsets of S satisfying (i), (ii) and (iii) is called a σ-field.

A probability measure is any function P defined on \mathcal{F} that takes values in $[0,1]$, and satisfies the axioms of probability.

Axioms of Probability
1. $P(A) \geq 0$ for all $A \in \mathcal{F}$
2. $P(S) = 1$
3. If $A_1, A_2, \ldots \in \mathcal{F}$ is a sequence of mutually disjoint subsets of S (i.e., $A_i \cap A_j = \emptyset$ for all $i \neq j$), then
 \[P\left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} P(A_i) \]
 This is called countable additivity.

If P is a probability measure on S, the pair (S, P) is called a probability space.

Random Variables
A random variable is a function from S to \mathbb{R}.

Example Suppose you conduct an experiment where you flip a coin infinitely often. The outcome is an infinite sequence of heads and tails. Let S be the set of all possible sequences of heads and tails. For $s \in S$, let $X(s)$ be the long-run proportion of heads. Then $X(s) \in [0,1] \subset \mathbb{R}$, so X is a random variable.
The distribution of a random variable X is the probability measure on \mathbb{R} induced by P. If this distribution is denoted by P_X, then for $A \subseteq \mathbb{R}$, $P_X(A) = P(\{s \in S : X(s) \in A\})$.

This subset of S is called the pre-image of A under the mapping X.

We often do not make explicit reference to the underlying probability measure P or explicitly give the probability measure P_X (but they are always there). The usual ways that we specify the distribution of a random variable X is through:

1. a distribution function (df) F_X
2. a probability mass function (pmf) p_X, if X is discrete
3. a probability density function (pdf) f_X, if X is continuous.

All of these functions are functions from \mathbb{R} to $[0, \infty)$. This is in contrast to P_X, which is a function defined on subsets of \mathbb{R}.
Remark on Notation

Last time we denoted the distribution of a random variable X by P_X, which is a probability measure on \mathbb{R}, and given by

$$P_X(A) = P(\{s \in S : X(s) \in A\})$$

where P is the underlying probability measure on S. Notationally, it is simpler to not refer to the probability measure P_X but rather just refer to the probability measure P, when writing probabilities involving X. Also, for simplicity we will drop the argument s in the notation. So we will write $X \in A$ instead of $\{s \in S : X(s) \in A\}$ (we will also drop the curly brackets). So we will write $D(\{X \in A\})$ to mean $P(\{s \in S : X(s) \in A\})$. For specific forms of the subset A we will also write:

If $A = (-\infty, x]$ we write $P(X \leq x)$ to mean $P(X \in (-\infty, x])$

If $A = (-\infty, x)$ we write $P(X < x)$

If $A = [x, \infty)$ we write $P(X \geq x)$

If $A = (x, \infty)$ we write $P(X > x)$

If $A = (a, b)$ we write $P(a < X < b)$

If $A = (a, b]$ we write $P(a < X \leq b)$

If $A = \{a\}$ we write $P(X = a)$

etc.

Review of Distribution Functions

For a random variable X, its distribution function (df), denoted by F_X, is a function from \mathbb{R} to $[0, 1]$ defined by

$$F_X(x) = P(X \leq x)$$

for $x \in \mathbb{R}$.

Distribution functions have the following properties.

- Any distribution function is a nondecreasing function on \mathbb{R}.

 That is, if $x_1 \leq x_2$ then $F_X(x_1) \leq F_X(x_2)$.

 To see this, note that if $x_1 \leq x_2$ then $(-\infty, x_1] \subseteq (-\infty, x_2]$.

 So we can write $(-\infty, x_2) = (-\infty, x_1] \cup (x_1, x_2]$. The 2 sets
\(-\infty, x_1\) and \((x_1, x_2]\) are disjoint, so
\[
P(\{X \in (-\infty, x_2]\}) = P(\{X \in (-\infty, x_1]\} \cup \{X \in (x_1, x_2]\})
\]
\[
F_x(x_2) = P(X \in (-\infty, x_1]) + P(X \in (x_1, x_2])
\]
\[
\geq P(X \in (-\infty, x_1])
\]
\[
F_x(x_1)
\]

So \(F_x(x_1) \leq F_x(x_2)\)

2. Any distribution function is continuous from the right. To say that \(F_X\) is continuous from the right at a point \(x\) means that if \(x_1 \geq x_2 \geq x_3 \geq \ldots \) and \(X_n \downarrow x\) as \(n \to \infty\) then
\[
\lim_{n \to \infty} F_X(x_n) = F_X(x).
\]
To show this consider the sets
\[
A = \bigcap_{n=1}^{\infty}\{X \leq x_n\} \quad \text{and} \quad B = \{X \leq x\}.
\]
First, note that \(A = B\). To show this one shows that \(A \subseteq B\) and \(B \subseteq A\). To show that \(A \subseteq B\), let \(s \in A\). Then \(s \in \{X \leq x_n\}\) for every \(n\).
That is, \(X(s) \leq x_n\) for every \(n\). But since \(X_n \downarrow x\) we must have \(X(s) \leq x\). But then \(s \in B\). So \(A \subseteq B\). Conversely, if \(s \in B\) then \(X(s) \leq x\). But \(x \leq x_n\) for every \(n\), so \(X(s) \leq x_n\) for every \(n\). So \(s \in \bigcap_{n=1}^{\infty}\{X \leq x_n\} = A\).

So \(B \subseteq A\). Therefore, \(A = B\). Also, note that
\[
\{X \leq x_n\}_{n=1}^{\infty}
\]
is a decreasing sequence of sets. That is, if \(n_1 \leq n_2\) then \(\{X \leq x_{n_2}\} \subseteq \{X \leq x_{n_1}\}\). Now we can use the continuity property of probabilities. By the continuity of probability (Theorem 1.8) for a decreasing sequence of sets,
\[
P\left(\bigcap_{n=1}^{\infty}\{X \leq x_n\}\right) = \lim_{n \to \infty} P(X \leq x_n)
\]

\[
\text{this set is} \quad \{X \leq x\}
\]

So then we have
\[
F_x(x) = P(X \leq x) = P\left(\bigcap_{n=1}^{\infty}\{X \leq x_n\}\right) = \lim_{n \to \infty} P(X \leq x_n) = \lim_{n \to \infty} F_x(x_n)
\]
So if there is a discontinuity in F_x at the point x_1, the picture looks like

\[F_x(x) \]

\[x \]

\[x_1 \]

3. The distribution function F_x of a random variable X determines the distribution of X. Note that F_x gives the probability of sets of the form \{ $X \leq x$ \} for $x \in \mathbb{R}$ but does not directly give the probabilities \{ $X \in A$ \} for arbitrary subset A of \mathbb{R}. It is a theorem from advanced probability that the collection of probabilities \{ $P(X \leq x)$: $x \in \mathbb{R}$ \} determine all the probabilities in the collection \{ $P(X \leq A)$: $A \in \mathcal{F}$ \}, where \mathcal{F} is the σ-field of subsets of \mathbb{R} that is of interest.
Probability Mass Functions (pmf)

If X is a discrete random variable then we can use its pmf to specify its distribution. We say that X is discrete if there is a finite or countable set $S_X \subseteq \mathbb{R}$ such that $P(X \in S_X) = 1$. The set S_X is called a support of the distribution of X. The probability mass function (pmf) of X is the function $p_X : \mathbb{R} \to \mathbb{R}$ given by

$$p_X(x) = P(X = x), \quad x \in \mathbb{R}.$$

$p_X(x)$ is defined for every $x \in \mathbb{R}$ and $p_X(x) > 0$ only if $x \in S_X$. The pmf determines the distribution of X: if $A \subseteq \mathbb{R}$ then $P(X \in A) = \sum_{x \in A} p_X(x)$. The df of X when X is discrete is always a step function. If we order the points in S_X as $x_1 < x_2 < x_3 < \ldots$

$$F_X(x) = P(X \leq x)$$

Probability Density Functions (pdf)

If X is a continuous random variable then we can use its pdf to specify its distribution. Unlike the discrete case, a continuous random variable may not have a pdf. We say that a random variable X is continuous if its df $F_X(x)$ is continuous at all $x \in \mathbb{R}$. If there exists a function $f_X : \mathbb{R} \to [0, \infty)$ satisfying

$$P(X \in A) = \int_A f_X(x) \, dx$$

for $A \subseteq \mathbb{R}$, then $f_X(x)$ is called a probability density function (pdf) of X. Remark: Unlike the df of X or the pmf of a discrete X,
Remark: If \(A = \mathbb{R} \), then if \(f_X \) is a pdf for \(X \) then
\[
P(X \in \mathbb{R}) = \int_{-\infty}^{\infty} f_X(x) \, dx.
\]
But \(P(X \in \mathbb{R}) = 1 \) for any random variable \(X \). So any pdf \(f_X(x) \) must satisfy \(\int f_X(x) \, dx = 1 \). Any nonnegative function \(f_X(x) \) defined on \(-\infty, \infty \) that integrates to 1 is the pdf of some random variable.

Remark: You can change the value of any given pdf at any finite or countable set of \(x \) values, and it will still be a pdf for the same random variable. This is because doing so will not change the value of the integral \(\int f_X(x) \, dx \) for any \(A \subseteq \mathbb{R} \). So the pdf of a random variable \(X \) is not unique. Normally, we use a standard version of any pdf that we use in practice, typically a continuous function.

Remarks for both pmfs and pdfs:

1. Both pmfs and pdfs are defined for all \(x \in \mathbb{R} \), and when specifying a pmf or pdf it should be specified for all values of \(x \in \mathbb{R} \) (including at points \(x \) where \(P_X(x) = 0 \) or \(f_X(x) = 0 \)).

2. In most practical situations, the distribution of a random variable \(X \) is specified or given only by giving the pmf of \(X \) (if \(X \) is discrete) or the pdf of \(X \) (if \(X \) is continuous), or the df, without any specification of the underlying probability measure \(P \) on \(S \), or \(X \) as a function. For any given pmf or pdf, there can be many (usually infinitely many) domains \(S \), underlying probability measures \(P \), and functions \(X \), that produce the distribution on \(\mathbb{R} \) specified by the given pmf or pdf.