Convergence of Sequences of Random Variables

Let \(X_1, X_2, \ldots \) be a sequence of random variables and let \(X \) be another random variable. We want to make precise what we mean by \(X_n \to X \) as \(n \to \infty \). There are several different ways we define this convergence. Unless otherwise stated we assume that \(X \) and all the \(X_i \)'s are defined on the same probability space \((\Omega, \mathcal{F}, \mathbb{P})\).

Why is knowing that \(X_n \to X \) in some sense useful? If we know this, then \(X \) is somehow "close" to \(X_n \) for "large" \(n \) then exact statements we can make about \(X \) are approximately true for \(X_n \) for large \(n \).

Modes of Convergence

1. We say that \(\{X_n\} \) converges to \(X \) almost surely, written \(X_n \xrightarrow{a.s.} X \) or \(X_n \to X \) a.s., if
 \[
 \mathbb{P}\left(\omega \in \Omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty \right) = 1
 \]
 We also say that \(X_n \) converges to \(X \) with probability 1, or \(X_n \to X \) w.p. 1.
 This mode of convergence explicitly depends on the functional form of the random variables \(X \) and \(X_n \).

2. We say that \(\{X_n\} \) converges to \(X \) in probability, written \(X_n \xrightarrow{p} X \), if for any given \(\varepsilon > 0 \),
 \[
 \mathbb{P}\left(|X_n - X| > \varepsilon \right) \to 0 \text{ as } n \to \infty.
 \]
 This mode of convergence depends on the joint distribution of \(X_n \) and \(X \) for every \(n \).

3. We say that \(\{X_n\} \) converges to \(X \) in the \(r \)-th mean, where \(r > 0 \), written \(X_n \xrightarrow{\text{m}^r} X \), if
 \[
 \mathbb{E}[|X_n - X|^r] \to 0 \text{ as } n \to \infty.
 \]
 Again, this mode of convergence depends on the joint distribution of \(X \) and \(X_n \) for every \(n \). If \(r = 2 \), this is also called mean squared convergence.
We say that \(\{X_n\} \) converges to \(X \) in distribution, written \(X_n \xrightarrow{d} X \), if
\[
F_n(x) \to F(x)
\]
for all \(x \in \mathbb{R} \) such that \(F(X) \) is continuous at \(x \), where \(F_n \) is the df of \(X_n \) and \(F \) is the df of \(X \).

This mode of convergence only depends on the marginal distributions of \(X_n \) and \(X \). This mode of convergence is also called weak convergence.

Before discussing the relationships between these modes of convergence, let us state and prove the Weak Law of Large Numbers.

Theorem Weak Law of Large Numbers

Let \(X_1, X_2, \ldots \) be a sequence of independent and identically distributed random variables with finite mean \(\mu \) and finite variance \(\sigma^2 \). Let \(\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \). Then \(\bar{X}_n \xrightarrow{p} \mu \).

Proof. Let \(\varepsilon > 0 \) be given. We wish to show
\[
P(\left|\bar{X}_n - \mu\right| > \varepsilon) \to 0.
\]
But
\[
P(\left|\bar{X}_n - \mu\right| > \varepsilon) \leq \frac{\text{Var}(\bar{X}_n)}{\varepsilon^2}
\]
by Chebyshev's inequality
\[
= \frac{\sigma^2}{n\varepsilon^2} \to 0 \quad \text{as} \quad n \to \infty.
\]

Example Let \(X_1, X_2, \ldots \) be i.i.d. with \(P(X_i = 1) = \frac{1}{2} \) and \(P(X_i = -1) = \frac{1}{2} \). Then \(\mu = E[X_i] = 0 \) for all \(i \). Then by the WLLN we have \(\bar{X}_n \xrightarrow{p} 0 \). Let us now show that \(\bar{X}_n \xrightarrow{d} 0 \).

The limit df is \(F(x) =\begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \geq 0 \end{cases} \)

Let \(F_n(x) \) be the df of \(\bar{X}_n \). For \(x > 0 \), we have
\[
F_n(x) = P(\bar{X}_n \leq x) = 1 - P(\bar{X}_n > x),
\]
but
\[
P(\bar{X}_n > x) \leq P(\bar{X}_n < -x \text{ or } \bar{X}_n > x) = P(1|\bar{X}_n| > x) \to 0 \quad \text{because} \quad \bar{X}_n \xrightarrow{p} 0.
\]
So \(F_n(x) = 1 - P(\bar{X}_n > x) \to 1 \) as \(n \to \infty \).

So \(F_n(x) \to F(x) \) as \(n \to \infty \) for \(x > 0 \).
For \(x < 0 \) we have
\[
F_n(x) = P(\overline{X}_n \leq x) \leq P(\overline{X}_n \leq x \text{ or } \overline{X}_n > -x) \\
\leq P(\frac{1}{n} |X| > x) \to 0 \text{ as } n \to \infty
\]
So \(F_n(x) \to F(x) \) as \(n \to \infty \) again, since \(\overline{X}_n \to 0 \).

For \(x < 0 \), \(F(x) \) is discontinuous. Therefore, \(\overline{X}_n \to 0 \).

Why don't we require \(F_n(0) \to F(0) \) in the definition of convergence in distribution? In this example, consider
\[
F_n(0) = P(\overline{X}_n \leq 0) = P(S_n \leq 0), \text{ where } S_n = \sum_{i=1}^{n} X_i.
\]
If \(n \) is odd, then \(S_n \) cannot equal 0, and by symmetry,
\[
P(S_n < 0) = P(S_n > 0) = \frac{1}{2}, \text{ so } P(S_n \leq 0) = \frac{1}{2}.
\]
If \(n \) is even, \(P(S_n = 0) > 0 \), but as \(n \to \infty \) \(P(S_n = 0) \to 0 \).
Also by symmetry, \(P(S_n < 0) = P(S_n > 0) \), so
\[
P(S_n \leq 0) = \frac{1}{2} + \epsilon(n), \text{ where } \epsilon(n) \to 0 \text{ as } n \to \infty.
\]
Therefore, \(F_n(0) = P(S_n \leq 0) \to \frac{1}{2} \text{ as } n \to \infty \).

So \(F_n(0) \not\to F(0) = 1 \)

If we were to require that \(F_n(0) \to F(0) \) in the definition of convergence in distribution, then we would be in the undesirable or non-useful situation that \(\overline{X}_n \) in this example would not converge to anything in distribution, yet it does converge to 0 in probability.
For the 4 modes of convergence we have the following implications:

\[X_n \xrightarrow{a.s.} X \quad \Rightarrow \quad X_n \xrightarrow{p} X \quad \Rightarrow \quad X_n \xrightarrow{d} X \quad \Rightarrow \quad X_n \xrightarrow{r.m.} X \]

In general no other implications hold.

Theorem \(X_n \xrightarrow{r.m.} X \implies X_n \xrightarrow{p} X \).

Proof. Let \(\varepsilon > 0 \) be given. Then

\[
P(X_n - X > \varepsilon) = P\left(\left|X_n - X\right| > \varepsilon\right)
\leq \frac{E[|X_n - X|^r]}{\varepsilon^r}
\xrightarrow{\text{by Markov's inequality}} 0
\]

since \(E[|X_n - X|^r] \to 0 \) by assumption.

Theorem \(X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{p} X \).

Proof. First, recall that \(X_n(\omega) \to X(\omega) \) as \(n \to \infty \) means that for any \(\varepsilon > 0 \) there exists \(N \) such that for \(n \geq N \),

\(|X_n(\omega) - X(\omega)| \leq \varepsilon \). Let \(\varepsilon > 0 \) be given.

Define \(A(E) = \{\omega \in \Omega : |X_n(\omega) - X(\omega)| > \varepsilon \text{ for infinitely many } n\} \)

\(A_n(E) = \{\omega \in \Omega : |X_n(\omega) - X(\omega)| > \varepsilon \} \)

\(B_n(E) = \{\omega \in \Omega : |X_n(\omega) - X(\omega)| > \varepsilon \text{ for some } m \geq n\} \)

Note that

(i) if \(\omega \in A(E) \) then \(X_n(\omega) \) does not converge to \(X(\omega) \). Since \(X_n \xrightarrow{a.s.} X \) we have \(P(A(E)) = 0 \) for any \(\varepsilon > 0 \).

(ii) To show that \(X_n \xrightarrow{p} X \), we want to show that \(P(A_n(E)) \to 0 \) as \(n \to \infty \).

(iii) \(A_n(E) \subseteq B_n(E) \) for every \(n \).

(iv) \(B_1(E) \supseteq B_2(E) \supseteq B_3(E) \supseteq \ldots \), i.e. \(\{B_n(E)\} \) is a decreasing sequence of sets.

Next, note that \(A(E) = \bigcap_{n=1}^{\infty} B_n(E) \) (check that if \(\omega \in A(E) \) then \(\omega \in B_n(E) \) for every \(n \), and if \(\omega \in B_n(E) \) for every \(n \) then \(\omega \in A(E) \)).
Then $0 = P(A(\epsilon)) = P(\bigcap_{n=1}^\infty B_n(\epsilon))$
\[= P(\lim_{n \to \infty} B_n(\epsilon)) \quad \text{since the } \{B_n(\epsilon)\} \text{ are decreasing} \]
\[= \lim_{n \to \infty} P(B_n(\epsilon)) \quad \text{by the continuity of probability} \]

But $A_n(\epsilon) \subseteq B_n(\epsilon)$, so $P(A_n(\epsilon)) \leq P(B_n(\epsilon))$. Therefore, if $\lim_{n \to \infty} P(B_n(\epsilon)) = 0$ then $\lim_{n \to \infty} P(A_n(\epsilon)) = 0$.

That is, $P(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$. So $X_n \xrightarrow{p} X$.

Example (showing that $X_n \xrightarrow{p} X$ does not imply that $X_n \xrightarrow{a.s.} X$).

Let X_1, X_2, \ldots be independent random variables with
\[P(X_n = 0) = 1 - \frac{1}{n} \quad \text{Let } \epsilon > 0 \text{ be given}.\]

Then $P(|X_n - 0| > \epsilon) = P(X_n = 1) = \frac{1}{n} \to 0$ as $n \to \infty$.

Therefore, $X_n \xrightarrow{p} 0$. Let us now see that X_n does not converge to 0 a.s. Referring to the set $B_n(\epsilon)$ from proof of last theorem, consider
\[B_n(\epsilon)^c = \{ \omega \in \Omega : |X_m(\omega) - 0| \leq \epsilon \text{ for all } m \geq n \}.\]

\[P(B_n(\epsilon)^c) = P(X_n \leq \epsilon, X_{n+1} \leq \epsilon, \ldots) = \lim_{M \to \infty} P(X_n \leq \epsilon, X_{n+1} \leq \epsilon, \ldots, X_M \leq \epsilon) \]
\[= \lim_{M \to \infty} P(X_n \leq \epsilon) \times P(X_{n+1} \leq \epsilon) \times \ldots \times P(X_M \leq \epsilon) \quad \text{by independence} \]
\[= \lim_{M \to \infty} P(X_n = 0) \times P(X_{n+1} = 0) \times \ldots \times P(X_M = 0) \]
\[= \lim_{M \to \infty} (1 - \frac{1}{n}) (1 - \frac{1}{n+1}) \times \ldots \times (1 - \frac{1}{M}) \]
\[= \lim_{M \to \infty} \frac{(n+1)(n+2) \ldots (n+M)}{n} \times \ldots \times \frac{(M+1) \ldots (M+M)}{M} \]
\[= \lim_{M \to \infty} \frac{n-1}{M} = 0 \]
Therefore, \(P(B_n(\varepsilon)) = 1 \). Then \(P(\bigcap_{n=1}^{\infty} B_n(\varepsilon)) = 1 \). Therefore, \(P(A(\varepsilon)) = 1 \) since \(A(\varepsilon) = \bigcap_{n=1}^{\infty} B_n(\varepsilon) \). Recall, if \(\omega \in A(\varepsilon) \) then \(X_n(\omega) \) does not converge to the limit. Therefore, with probability 1, \(X_n \) does not converge to 0.

Remark 1. The basic reason why \(X_n \to 0 \) a.s. in preceding example is that we constructed the \(X_n \)'s to be independent. Consider the following construction. Let \(\Omega = (0,1) \) and \(P \) be the Uniform \((0,1)\) distribution. Define \(X_n(\omega) = \begin{cases} 0 & \text{if } \omega \geq \frac{1}{n} \\ 1 & \text{if } \omega < \frac{1}{n} \end{cases} \)

Then \(P(X_n = 0) = 1 - \frac{1}{n} \) and \(P(X_n = 1) = \frac{1}{n} \), which is the same distribution for \(X_n \) as in the preceding example. Then \(X_n \) does exactly as in preceding example. Here, we can check that the \(X_n \) constructed as they are converge to 0 a.s. as well. Let \(\omega \in (0,1) \). We check if \(X_n(\omega) \to 0 \) as \(n \to \infty \). But eventually \(n \) will be big enough \((n > \frac{1}{\omega}) \) such that \(X_n(\omega) = 0 \). Therefore, \(\lim_{n \to \infty} X_n(\omega) = 0 \).

Since \(P((0,1)) = 1 \), we see that \(X_n \to 0 \).

Remark 2. The sequence \(\{X_n^3\} \) from the example also converges to 0 in the \(r \)-th mean, since
\[
E[(X_n - 0)^r] = E[X_n^r] = (0^r)(1 - \frac{1}{n}) + (1^r)\frac{1}{n} = \frac{1}{n} \to 0 \quad \text{as} \quad n \to \infty.
\]
This illustrates that \(X_n \xrightarrow{r} X \not\Rightarrow X_n \xrightarrow{a.s.} X \).
We start today with a theorem giving a sufficient condition for convergence almost surely. Recall, $X_n \overset{a.s.}{\rightarrow} X$ means that for any $\varepsilon > 0$, $P(|X_n - X| > \varepsilon) \rightarrow 0$ as $n \rightarrow \infty$. If this probability converges to 0 at a fast enough rate , then X_n will converge to X a.s.

Theorem If $\sum_{n=1}^{\infty} P(|X_n - X| > \varepsilon) < \infty$ for any $\varepsilon > 0$, then $X_n \overset{a.s.}{\rightarrow} X$.

Proof. Recall the sets

$A_n(\varepsilon) = \{ \omega \in \Omega: |X_n(\omega) - X(\omega)| > \varepsilon \}$

$B_n(\varepsilon) = \{ \omega \in \Omega: |X_m(\omega) - X(\omega)| > \varepsilon \text{ for some } m \geq n \}$

$A(\varepsilon) = \{ \omega \in \Omega: |X_n(\omega) - X(\omega)| > \varepsilon \text{ for infinitely many } n \}$

First, we show that the given condition implies $\lim_{n \rightarrow \infty} P(B_n(\varepsilon)) = 0$.

Note that $B_n(\varepsilon) = \bigcup_{m=n}^{\infty} A_m(\varepsilon)$. Then

$$P(B_n(\varepsilon)) = P(\bigcup_{m=n}^{\infty} A_m(\varepsilon))$$

$$\leq \sum_{m=n}^{\infty} P(A_m(\varepsilon)) \quad \text{(by subadditivity of probability)}.$$

$$\rightarrow 0 \text{ as } n \rightarrow \infty \text{ since } \sum_{m=1}^{\infty} P(A_m(\varepsilon)) < \infty.$$

So $P(B_n(\varepsilon)) \rightarrow 0$ as $n \rightarrow \infty$ for any $\varepsilon > 0$. Then, as in proof of a.s. convergence implying convergence in probability, we have $P(A(\varepsilon)) = 0$. For $X_n(\omega) \rightarrow X(\omega)$ to hold, ω should belong in $A(\varepsilon)^c$ for every $\varepsilon > 0$. It is sufficient to show this for ε of the form $\frac{1}{k}$. Take $\varepsilon = \frac{1}{k}$. Then $P(A(\frac{1}{k})) = 0$ for every $k \geq 1$.

Then $P(A(\frac{1}{k})^c) = 1$ for every $k \geq 1$.

Let $C = \bigcap_{k=1}^{\infty} A(\frac{1}{k})^c$. Then $P(C) = 1$.

If we choose for every $k \geq 1$, there exists an N such that for $n \geq N$, $|X_n(\omega) - X(\omega)| \leq \frac{1}{k}$ for all $n \geq N$. This implies that $X_n(\omega) \rightarrow X(\omega)$. Since $P(C) = 1$, we conclude that $X_n \overset{a.s.}{\rightarrow} X$.
Example (counterexample showing $X_n \overset{a.s.}{\to} X$ does not imply $X_n \overset{r,m}{\to} X$)

Take $\Omega = (0,1)$ and P the Uniform $(0,1)$ distribution.

Take $X_n(\omega) = \begin{align*}
0 & \quad \text{if } \omega \geq \frac{1}{n} \\
\frac{1}{n^2} & \quad \text{if } \omega < \frac{1}{n}
\end{align*}$

Then $P(X_n = 0) = 1 - \frac{1}{n}$ and $P(X_n = n^2) = \frac{1}{n}$. If $\omega \in (0,1)$ then $X_n(\omega)$ will equal 0 for all n such that $\frac{1}{n} \leq \omega$, or $n \geq \frac{1}{\omega}$. So $\lim_{n \to \infty} X_n(\omega) = 0$ for all $\omega \in (0,1)$. Since $P((0,1)) = 1$, we have that $X_n \overset{a.s.}{\to} 0$. But

$$E[|X_n - 0|^r] = E[X_n^r] = (0^r)(1 - \frac{1}{n}) + (n^2)^r \frac{1}{n} = n^{2r-1} \to \infty$$

So $X_n \not\overset{r,m}{\to} 0$ for $r > \frac{1}{2}$.

Also, for $\varepsilon > 0$, $P(|X_n - 0| > \varepsilon) = P(X_n > \varepsilon) = P(X_n = n^2) = \frac{1}{n} \to 0$ as $n \to \infty$.

Therefore, $X_n \overset{p}{\to} 0$. So convergence in probability does not imply convergence in the rth mean.

Now let us show that $X_n \overset{p}{\to} X$ does imply $X_n \overset{d}{\to} X$.

Theorem $X_n \overset{p}{\to} X \implies X_n \overset{d}{\to} X$.

Proof Let F_n be the df of X_n, F the df of X, and let $x \in \mathbb{R}$ be such that F is continuous at x. We wish to show $F_n(x) \to F(x)$ as $n \to \infty$. Our approach will be to lower bound and upper bound $F_n(x)$ by quantities that are close to $F(x)$.

(a) $F_n(x) = P(X_n \leq x)$

$$= P(X_n \leq x, X \leq x + \varepsilon) + P(X_n \leq x, X > x + \varepsilon)$$

$$\leq P(X \leq x + \varepsilon) + P(|X_n - X| > \varepsilon)$$

$$= F(x + \varepsilon) + P(|X_n - X| > \varepsilon)$$
(b) \(F(x - \varepsilon) = P(X \leq x - \varepsilon) \)
\[= P(X \leq x - \varepsilon, X_n \leq x) + P(X \leq x - \varepsilon, X_n > x) \]
\[\leq P(X_n \leq x) + P(\lvert X_n - x \rvert > \varepsilon) \]
\[= F_n(x) + P(\lvert X_n - x \rvert > \varepsilon) \]

Combining (a) and (b), we have
\[F(x - \varepsilon) - P(\lvert X_n - x \rvert > \varepsilon) \leq F_n(x) \leq F(x + \varepsilon) + P(\lvert X_n - x \rvert > \varepsilon) \]

First, let \(n \to \infty \) (note that we do not know at this point that \(\lim F_n(x) \) exists). Take \(\liminf \) of all quantities and \(\limsup \) of all quantities to get
\[F(x - \varepsilon) \leq \liminf_{n \to \infty} F_n(x) \leq \limsup_{n \to \infty} F_n(x) \leq F(x + \varepsilon) \]

The above holds for every \(\varepsilon > 0 \) and so, since \(F \) is continuous at \(x \), taking \(\varepsilon \to 0 \), we get
\[F(x) \leq \liminf_{n \to \infty} F_n(x) \leq \limsup_{n \to \infty} F_n(x) \leq F(x) \]

Therefore, \(\liminf_{n \to \infty} F_n(x) = \limsup_{n \to \infty} F_n(x) = F(x) \), and so
\[\lim_{n \to \infty} F_n(x) = F(x) \]. Thus, \(X_n \overset{d}{\to} X \).

Example (Counterexample showing that \(X_n \overset{d}{\to} X \) does not imply \(X_n \overset{p}{\to} X \)).

Let \(X, X_1, X_2, \ldots \) be i.i.d. Uniform \((0,1)\) random variables.

Then \(F_n(x) = F(x) \) for all \(x \in \mathbb{R} \) and for every \(n \). So, trivially, \(X_n \overset{d}{\to} X \). But \(P(\lvert X_n - x \rvert > \varepsilon) \) is the same for every \(n \), and is not 0 (in fact it is \((1-\varepsilon)^2 \)).

Thus, \(X_n \) does not converge to \(X \) in probability.