Example: Multivariate Hypergeometric Distribution

Consider the following experiment. We have

\(n_1 \) objects of type 1

\(n_r \) objects of type \(r \)

Let \(N = n_1 + \ldots + n_r \) be the total number of objects. Suppose we draw without replacement \(n \) objects randomly. The underlying probability space is \((S, P)\), where \(S \) is the set of all possible samples of size \(n \) that we could obtain in this way, and \(P \) specifies that every sample in \(S \) is equally likely. Let \(X_i = \# \) of objects of type \(i \) in the sample we draw, \(i = 1, \ldots, r \).

Let \(X = (X_1, \ldots, X_r)^T \). Then \(X \) is a random vector and its distribution is called the Multivariate Hypergeometric distribution with parameter \(n \) and \(n_1, \ldots, n_r \). To consider the joint pmf of \(X \) we should first consider the possible values of \(X \), i.e., the support \(S_X \) of \(X \).

\[\begin{align*}
\text{e.g.} & \quad r = 2, \quad n_1 = 3, \quad n_2 = 4, \quad N = 7 \\
S_X \text{ when } & \quad n = 1 \\
& \quad \begin{array}{c}
\text{when } n = 2 \\
\text{when } n = 3 \\
\text{when } n = 4 \\
\text{when } n = 5 \\
\text{when } n = 6 \\
\text{when } n = 7
\end{array}
\end{align*} \]

Note that as the sample size \(n \) increases the support of \(X \) starts hitting constraints imposed by the numbers \(n_i \) of each type of object that there are in the population.
In general, we may write the constraints on S_x as follows:

$$S_x = \{ x = (x_1, \ldots, x_r) \in \mathbb{R}^r : x_i \in \{0, \ldots, n_i\} \text{ for } i = 1, \ldots, r \}
\text{ and } x_1 + \cdots + x_r = n \}$$

More explicitly, we can write S_x as

$$S_x = \{ x = (x_1, \ldots, x_r) \in \mathbb{R}^r : x_i + \cdots + x_r = n,
\max(0, n - (N-n_i)) \leq x_i \leq \min(n, n_i),
\text{ and } x_i \text{ is an integer, } i = 1, \ldots, r \}$$

Joint pmf

For $x \in S_x$, $(x = (x_1, \ldots, x_r)^T)$

$$p(x = x) = p(x_1 = x_1, \ldots, x_r = x_r)$$

This is a counting problem. Since all samples in S are equally likely, the above probability is

$$\frac{\text{# of samples in } S \text{ that have } x_1 \text{ type 1 objects, } \ldots, x_r \text{ type } r \text{ obj.}}{\text{total # of samples in } S}$$

Note that samples in S are distinct if the objects in the sample are distinct, i.e., 2 samples are distinct if the objects in 1 sample are not all the same as the objects in the other sample (even if they are of the same type). We have

$$p(x_1 = x_1, \ldots, x_n = x_n) = \frac{(n_1)^{x_1} (n_2)^{x_2} \cdots (n_r)^{x_r}}{N^n}$$

So the joint pmf of X is

$$p_X(x) = \begin{cases} \frac{(n_1)^{x_1} \cdots (n_r)^{x_r}}{N^n} & \text{if } x = (x_1, \ldots, x_n)^T \in S_x \\ 0 & \text{otherwise} \end{cases}$$